
GETTING INTO MICROPROCESSORS

Software/Firmware developments-1

SC/MP gets Tiny-BASIC

Although microcomputers haven't
been around for very long as yet, already
many of the people using them have
begun to show interest in the possibility
of programming in one of the problem-
orientated or "higher" languages like
FORTRAN or BASIC. No doubt these
thoughts tend to be generated most
often when one is slogging through a
program written in hexadecimal code!

Of course in order to be able to run
programs written in a problem-
orientated language, one needs to have
them translated into language which the
computer can understand. At present this
must be done in one of two ways.

One is to use a compiler, which is itself
a computer program. When fed into the
machine, the compiler will take your
"source code" program as written, and
produce from it an "object code"
equivalent in machine language. It is this
version which you then feed into the
machine to get your program running.

The other way is td use an interpreter,

which again is also a computer program.
But unlike a compiler, an interpreter
doesn't produce a separate object code
version of your program. Instead it must
be put in the machine alongside your
program, which it interprets into
machine language and executes all at the
same time.

Which approach is used depends
mainly on whether you have a compiler
or an interpreter program available,
although an interpreter tends to be a little
more convenient because it allows faster
program development.

The problem with either approach is
that both compilers and interpreters tend
to be rather long. They are rather tricky
and tedious to write, and when written
they need quite a deal of computer
memory. The latter is especially true with
interpreters, which are loaded into
memory along with the source
program.

Because of the requirement for a fairly
large memory, until recently languages

like FORTRAN and BASIC have mainly
been available only on larger corn-
puters.

In the last couple of years, however,
a number of people working with various
microcomputer systems have come up
with interpreters capable of fitting into
small systems, and which provide a lim-
ited sub-set of the full original BASIC lan-
guage. Naturally enough the language
provided by these interpreters has
quickly become known as "Tiny-
BASIC".

Now National Semiconductor has
announced that a Tiny-BASIC interpreter
will very shortly become available for its
SC/MP microprocessor systems.
National's Australian subsidiary, NS Elec-
tronics, expects to have it available by
late January. It will be sold as a product
package which comprises the interpreter
itself resident in 4k of PROM on a plug-in
PC card, a 2k static RAM card for the
user's source program, and a user's
manual. The complete package should
sell for around $305 plus tax, where
applicable. Those who already have
SC/MP systems with at least 2k of RAM
may also be able to buy just the
interpreter and the manual, if they wish,
by quoting the serial number of their
existing RAM board.

National has called its version of Tiny-
BASIC "N I BL", which stands for National
Industrial BASIC Language. This is meant
to emphasise that they see its applica-
tions not only in educational and hobby
computing, but also and perhaps more
importantly in industrial control situa-
tions.

.Like most other Tiny-BASIC
interpreters, NIBL is not fast. A program
written in NIBL executes somewhere
between 1000 and 2000 times more
slowly than an equivalent program writ-
ten in machine or assembly language. But
this can still be fast enough for most
human interfaces, and for slow real-time
control applications.

And the point is that NIBL lets you
write programs and get them running
very much more easily and quickly. It
also provides "instant" error messages
during program execution, to help you
in debugging. And it lets you execute sin-
gle instructions in real-time conversa-
tional mode, if you wish.

Naturally enough, NIBL doesn't
provide all of the facilities of full BASIC—
after all, it has to fit into only 4k bytes
of memory. But it does provide a very

If you've tended to scorn microcomputer systems because of the need
to program in machine or assembly language, think again. National
Semiconductor is releasing shortly a Tiny-BASIC interpreter for its
SC/ MP systems. It will be sold resident in 4k-bytes of PROM, on a
PC card.- Plug in the card, and you can have programs running in Tiny-
BASIC within the hour!

by JAMIESON ROWE

This is the pre-
release version of
N1BL, which was in
only 3k bytes of
PROM. The final
version is in 4k
bytes, with the PCB
having eight of the
PROMs instead of
six.

90 	ELECTRONICS Australia, December, 1976

10 PRINT "HI! I WILL THINK OF A NUMBER BETWEEN 0 AND 255."
20 PRINT "WHEN I HAVE, TRY TO GUESS ITS VALUE. CI WILL HELP)"
30 LET B=1
40 LET A=OB
50 PRINT "OK, I HAVE A NUMBER"
60 PRINT "WHAT IS YOUR GUESS";
70 INPUT C
80 IF C=A THEN GOTO 	140
90 IF C>A THEN GOTO 	120
100 PRINT "TOO SMALL. NEXT GUESS";
110 GO TO 70
120 PRINT "TOO BIG. NEXT GUESS";
130 GO TO 70
140 PRINT "YOU GUESSED IT!!! 	LET'S PLAY AGAIN."
150 LET B=B+1
160 GO TO 40
170 END

>RUN
HI! I WILL THINK OF A NUMBER BETWEEN 0 AND 255.
WHEN I HAVE, TRY TO GUESS ITS VALUE.. CI WILL HELP)
OK, I HAVE A NUMBER
WHAT IS YOUR GUESS? 200
TOO BIG. NEXT "GUESS? 180
TOO SMALL. NEXT GUESS? 196
YOU GUESSED IT!!! 	LET'S PLAY AGAIN.
OK, I HAVE A NUMBER
WHAT IS YOUR GUESS? 128
TOO BIG. NEXT GUESS? 64
TOO BIG. NEXT GUESS? 32
TOO BIG. NEXT GUESS? 0
TOO SMALL. NEXT GUESS? 16
YOU GUESSED IT!!! 	LET'S PLAY AGAIN.
OK, I HAVE A NUMBER
WHAT IS YOUR GUESS? 128
TOO BIG. NEXT GUESS? 0
TOO SMALL. NEXT GUESS? 64
TOO BIG. NEXT GUESS? 32 .
TOO SMALL. NEXT GUESS? 45
TOO SMALL. NEXT GUESS? 56
TOO BIG. NEXT GUESS? 60
TOO BIG. NEXT GUESS? 50
TOO SMALL. NEXT GUESS? 54
YOU GUESSED IT!!! 	LET'S PLAY AGAIN.
OK, I HAVE A NUMBER
WHAT IS YOUR GUESS?
! 7 AT 70

GETTING INTO MICROPROCESSORS

useful subset. Here's a summary of what
you get:

Valid statement forms include INPUT
(for numbers only), LET, GO TO, GO
SUB and RETURN, IF THEN, and PRINT.
There is also a CALL statement, to allow
calling machine-language subroutines.
The latter facility is very valuable, of
course, because it will allow NIBL to be
expanded.

The final version of NIBL may also have
the ability to interpret DO . UNTIL sta-
tements, if PROM space permits.

Program control statements provided
are LIST, RUN, END, and CLEAR. The first
of these may be used to list either the
whole program, or alternatively a single
line. An inbuilt editor allows lines to be
replaced, and also additional lines added
as required. All that is necessary for cor-
rect execution is that lines are numbered
consecutively between 1 and 32, 767.

If statement lines begin with a number,
NIBL stores them away as a program for
deferred execution. If a statement is not
numbered, NIBL executes it immediately
upon entry (following the user terminat-
ing the line with a carriage return).

NIBL is only capable of performing
integer arithmetic, on numbers within the
range from —32,768 to + 32,767. It
provides the four basic arithmetic func-
tions, represented by the symbols + ,—,*
and /, together with the logic operators
AND, OR and NOT, and a 16-bit random
number generator function called by the
label RND. Constants may be expressed
in either decimal or hexadecimal.

Up to 26 variables may be used in a
NIBL program, using single alphabetic
characters as labels (A-Z inclusive).
Parenthesis is permitted, and subroutines
may be nested to 16 levels.

All of the normal relational operators
are provided, including equals, greater
than, less than, greater than or equals,
less than or equals, and not equal to.

NIBL also provides an operator of
indirection, symbolised by the "at" or

"@" sign. When placed immediately
preceding a variable this causes the varia-
ble to be interpreted as a decimal
address in SC/MP memory space. If A is
a variable with value 256, the statement
LET B= @A gives variable B the value
equal to the data byte in decimal
memory location 256.

What is NIBL like in practice? Well, at
the time of writing the final version was
not yet available in Australia, but thanks
to NS Electronics I was able to try an
earlier pre-release version. This was in
only 3k of PROMs, and didn't have some
of the features which will be in the full
4k version—like the RN D function or the
logic functions, or the CALL statement.

However it was certainly very interes-
ting to try the smaller version out, with
one of the SC/MP LCDS systems. Even
though its facilities were rather limited,
it was still very nice to be programming
at a higher level of abstraction and be
able to make corrections on-line.

In fact after having got a couple of sim-
ple programs up and running, it was with
surprise that I noticed the time: less than
an hour after the NIBL card had been
plugged in and the system turned on!

As the two programs might be of
interest to readers, I have reproduced
them on these pages. In each case the
program itself is listed first, followed by
a sample of the execution.

As you can see, the first program is a
very simple one which calculates the fac-
torial of a number fed in from the

keyboard. It prompts the user for a num-
ber, prints out the answer and then asks
if the user wishes to work out another.
A negative reply causes it to halt.

Incidentally, this little program soon
comes up against the inability of NIBL to
cope with numbers greater than 32,767.
In fact the largest number it can find the
factorial for is 7; 8 causes overflow.

The longer program is a simple num-
ber guessing game. As the pre-release
version of NIBL didn't have the RND
function, I had to use the indirect opera-
tor to generate pseudo-random numbers
by fetching instruction bytes from NIBL's
own PROMs! As you can see, this
worked fairly well.

The program can be quite good fun,
giving you a taste of the appeal in corn-
puter games.

Of course with the final version of
NIBL, it will be possible to run games like
this which will be rather more satisfying,
using the RND function to generate• less
predictable numbers. In fact quite a few
games have been written in Tiny-BASIC,
and should be capable of being run with
NIBL.

In short, NIBL seems to be very good
news for SC/MP users.

You'll be able to order NIBL from NS
distributors throughout Australia. For
further information, contact NS Elec-
tronics at either Cnr. Stud Road and
Mountain Hwy, Bayswater, Victoria 3153,
or 2-4 William Street, Brookvale, NSW
2100.

10 PRINT "HI, I WORK OUT FACTORIALS."
20 PRINT "WHAT NUMBER WOULD YOU LIKE";
30 INPUT N
40 LET F=1
50 IF N<=1 THEN GO TO 90
50 LET F=F*N
70 LET N=N-. 1
80 GO TO 50
90 PRINT "ITS FACTORIAL I S", F
91 PRINT "DO YOU WANT TO WORK OUT ANOTHER C 1=YESa 0=N0) ";
92 INPUT A
93 IF A=1 THEN GO TO 20
100 END

RUN
NI, I WORK OUT FACTORIALS.
WHAT NUMBER WOULD YOU LIKE? 6
ITS FACTORIAL I S 720
DO YOU WANT TO WORK OUT ANOTHER C 1=YESs 0=N 0)? 1
WHAT NUMBER WOULD YOU LIKE? 7
ITS FACTORIAL I S 5040
DO YOU WANT TO WORK OUT ANOTHER C 1=YES, 0=N0)? 0

Here are the two simple Tiny-BASIC programs which the
author wrote to try out the pre-release version of NIBL. One
works out factorials, the other is a number game.

91 ELECTRONICS Australia, December, 1976

GETTING INTO MICROPROCESSORS

Software/ Firmware development-2

A 'Text Editor for SC/IVIP

If you've ever tried punching up a
paper tape of a program in assembly or
problem-orientated language using a
teleprinter on "local", you'll know just
how frustrating it can be. Even if you are
extremely careful it seems to be impos-
sible not to make a few errors, and
Murphy's Law always seems to ensure
that you rarely discover these until you
have typed in at least three more lines!

Of course if you realise that you made
an error immediately after having done
it, you can use the back-space facility and
delete the wrong character(s) with the
rubout key. But if you don't discover an
error until later on, you are forced to
either perform cut-and-paste surgery on
the tape, or try stop-and-go editing of the
tape while punching a new "clean" ver-
sion.

Preparing long problems in this way
can be very tedious and time consuming.
Small wonder, then, that the people
working on minicomputers and larger
machines have for years been using the

COMMAND 	 FUNCTION

A)

R)

L) • ML) , MANL)

MC) 	MANIC)

MI)

MD) A M,ND)

H)

P) , MP) , M,NP)

B) , MB) A M,NB)

/

BELL

CM AND N REPRESENT

computer itself to make the job easier
and faster. This is done by using a soft-
ware utility program known as a sym-
bolic text editor.

Using such a program, you type your
own program text into a section of the
computer's memory which is set aside as
the "buffer". Then with the text in the
buffer, the editor lets you change lines,
delete lines, insert extra lines at any
desired point, inspect lines or groups of
lines, and finally either type out a listing
or punch out a clean tape (or both).

In short, a text editor program can be
a very useful item of software, and it is
well worth having one even on small
microcomputer systems. The only
trouble is that not too many microcom-
puters have been provided with editor
programs as yet, particularly the systems
based on the more recent microproces-
sor chips.

To help alleviate this situation, I have
written a text editor program for the
National Semiconductor SC/MP lowcost

development system, as described in our
October issue. I chose this system
because at present the SC/MP chip and
its systems appear to be growing fastest
in popularity, particularly in the hobbit)
area.

The editor program itself is written a
SC/MP machine language, and occupies
864 bytes of memory. It uses the 256-byte
RAM in the LCDS system base as a stack
and line address buffer, but can use RAM
memory at any other location in SC/ %it
memory space for its text buffer. The lar-
ger the available RAM, the more text the
editor can handle at one time.

I have arranged for the editor to be
available from NS Electronics distribu-
tors, written into a pair of MM520$
512-byte PROMs. With the PROMs plug-
ged into the correct locations on a
SC/MP ROM card which is programmed
for the appropriate address range (heL.
3000-3FFF), you will then have the editor
permanently resident in your system, and
available at any time merely by calling it
at its starting address (hex. 3C00).

Alternatively, you can run the editor a
RAM memory, loading it in each time ■

need it by means of a punched paper
tape or cassette. I am reproducing a full
hexadecimal listing of the program
these pages, to allow you to do this if ■

wish. The four-digit numbers at the start
of each line are addresses; as you can see
the program runs from 3C00 to 3F54.
inclusive.

Note that if you do elect to run the KID-
tor in RAM, you will need at least one
2k-byte RAM card. This will give you 1k
of RAM left for the text buffer—enough
for small text slabs, but barely good
enough for serious work. With the editor
in PROMs, even a single RAM card gives
you a full 2k for the text buffer, which
is very much more practical.

When the editor is called, it announces
itself and then asks you to give the a%aii-
able text buffer range in memory. This
must be supplied as two hexadecimal
numbers, separated by a non-het
character such as a space or hyphen,
Leading zeroes are not required, but the
second number must end with a carriage
return.

The editor then enters its command
mode, signalling this by ringing the bell
The user may then type in a command
letter, followed by a carriage return. if
text is to be fed in via the keyboard, the
command letter "A" is appropriate, whie
"R" tells the editor to read in a previoush
punched tape via the reader.

Here is a symbolic text editor program which the author has written
for National Semiconductor's SC/ MP low cost development system.
It provides all the basic text editing functions to let you prepare
programs for assemblers, compilers, etc. You will be able to buy it
resident in 1 k bytes of PROM and ready to go, or, alternatively, it can
be fed into your system via tape or cassette, and run in RAM.

by JAMIESON ROWE

SC/MP SYMBOLIC EDITOR PROGRAM.
WRITTEN BY J. ROWE, ELECTRONICS AUSTRALIA
FOR SC/MP L. C. D. S. SYSTEMS

BASIC COMMANDS AND THEIR FUNCTIONS:
(THE CLO SING BRACKET ") " SYMBOLISES A CARRI AGE RETURN)

APPEND LINES TO BUFFER
READ TAPE INTO BUFFER
LIST ALL LINES, OR LINE M, OR LINES M-N
CHANGE LINE M, OR LINES M-N
INSERT LINE OR LINES BEFORE LINE M
DELETE LINE M, OR LINES H-N
KILL TEXT IN BUFFER
PUNCH ALL LINES, LINE M. OR LINES M-N
AS FOR PUNCH, BUT PUNCHES A BELL CHAR
AT END OF TEXT
EDI TOR PRINTS NUMBER OF LINES CURRENTLY
HELD IN TEXT BUFFER, IN DECIMAL
WHEN IN TEXT MODE, RETURNS EDITOR TO
COMMAND MODE

DECIMAL LINE NUMBERS)

Here is the basic command set of the editor, showing the various command letters,
the possible arguments for each, and their functions. In text mode, a percent sign
acts as a backspace.

92 	ELECTRONICS Australia, December, 1976

3C00 04 C4 77 36 C4 FF 32 C4 7B 37 C4 16 33 3F 3F 07
3C10 C4 4F 33 3F C6 01 CA F 1 C6 01 CA EF 3F C6 01 CA
3C20 EF C6 01 CA ED C4 00 CA F9 C2 FO CA F8 C2 EF CA
3C30 F7 C4 7A 37 C4 E1 33 C4 07 3F C4 OD 3F C4 0A 3F
3C40 C4 00 CA F4 CA F3 CA F2 C4 7A 37 C4 90 CA F 1 33
X50 3F D4 7F 01 C4 3F 35 C4 2B 31 C5 03 98 3B 60 9C
3C60 F9 C 1 FE CA F6 C 1 FF 31 C2 F6 35 C2 F9 03 FA F3
3C70 94 02 90 12 C2 F9 03 FA F2 94 02 90 09 C2 F2 98
=0 10 03 FA F3 94 OB C4 7A 37 C4 El 33 C4 3F 3F 90
3C90 A9 3F D4 7F E4 OD 9C EE 3D 40 D4 70 E4 30 98 19
3CAO 40 E4 2F 9C 09 C4 3E 35 C4 B2 31 3D 90 SC 40 E4
3CB0 2C 9C D3 C4 01 CA F4 90 8F 40 D4 OF CA F5 C2 F4
3CC0 9C 04 C2 F3 90 02 C2 F2 02 01 40 70 01 70 70 01
3CDO 40 70 F2 F5 01 C2 F4 9C 05 40 CA F3 90 D9 40 CA
3CEO F2 90 D4 35 CA F6 31 CA F5 C2 FT CA E9 C2 F8 CA
3CFO EA C2 F1 E4 84 98 09 C4 7A 37 C4 El 33 C4 OA 3F
3D00 C4 7A 37 C2 F1 33 C2 EE 02 F4 01 E2 F8 98 53 C2
3310 F8 35 C2 F7 31 3F D4 7F 01 40 E4 OA 98 ID 40 E4
320 07 98 3F 40 E4 25 9C 04 C5 FF 90 OF 40 98 0C E4
3330 7F 98 08 40 E4 OD 98 01 40 CD 01 C4 77 35 CA F8
3D40 C2 F3 02 F2 F3 31 CA F7 40 E4 OD 9C 86 C2 E9 C9
3D50 00 C2 EA C9 01 C2 F9 E4 74 98 07 C2 F6 35 C2 F5
3060 31 3D C4 3C 35 C4 30 31 C4 90 CA F1 3D 08 08 08
3070 C4 80 90 02 C4 01 CA F 1 C2 F3 9C 0A C4 01 CA F3
3D80 C2 F9 CA F2 90 08 C2 F2 9C 04 C2 F3 CA F2 C4 E1
3D90 33 C4 OA 3F C2 F 1 98 15 C4 7A 37 C4 88 33 3F C4
33A0 El 33 C4 CO CA F6 C4 00 3F AA F6 9C F9 C4 77 35
31)B0 C2 F3 02 F2 F3 31 C 1 00 CA F6 Cl 01 35 C2 F6 31
MCO C5 01 98 03 3F 90 F9 C4 OD 3F C4 OA 3F C2 F3 E2
3DDO F2 98 04 AA F3 90 D6 C2 F 1 98 IA 94 03 C4 07 3F
3DE0 C4 CO CA F6 C4 00 3F AA F6 9C F9 C4 7A 37 C4 88
33F0 33 3F C4 El 33 C4 3C 35 C4 39 31 3D OS OS 08 08
3E00 C2 F2 9C 06 C2 F3 98 35 CA F2 BA F3 C2 F2 E2 F9
3E10 98 20 AA F3 AA F2 C4 77 35 C2 F2 02 F2 F2 31 C4
3E20 77 37 C2 F3 02 F2 F3 33 C1 00 CB 00 Cl 01 CB 01
3130 90 DA C2 F3 CA F9 C4 3C 35 C4 30 31 3D C4 3C 35
1E40 C4 83 31 3D C2 F3 98 F5 C2 F2 9C F1 C4 77 35 C2
3E50 F3 02 F2 F3 31 C1 00 CA EB C 1 01 CA EC C4 3C 35
3E60 C4 E2 31 3D C2 F9 CA F2 AA F9 C4 77 35 C2 F2 02
3E70 F2 F2 31 C 1 00 C9 02 Cl 01 C9 03 C2 F2 E2 F3 98
ariZO 04 BA F2 90 E5 C2 EB C9 02 C2 EC C9 03 AA F3 90
3E90 BB C2 F2 9C 06 C2 F3 98 A4 CA F2 C4 3C 35 C4 E2
3EA0 31 3D C2 F3 E2 F2 98 04 AA F3 90 EF C4 3C 35 C4
3EB0 30 31 3D C4 00 CA F6 CA F5 CA F4 C2 F9 02 F4 9C
3ECO 94 05 C2 F9 01 90 03 01 AA F6 40 02 F4 F6 94 02
EDO 90 05 01 AA F5 90 F3 40 02 F4 FF 94 02 90 05 01
3EE0 AA F4 90 F3 C4 7A 37 C4 El 33 C4 3D 3F C2 F6 98
3V-0 03 C4 31 3F C2 F5 98 03 DC 30 3F C2 F4 DC 30 3F
3700 C4 3C 35 C4 39 31 3D OD OA 45 44 49 54 4F 52 20
3F10 52 45 41 44 59 2E 0D OA 47 49 56 45 20 42 55 46
3'20 46 45 52 20 52 41 4E 47 45 3A 00 41 3F 4A 52 3F
3F30 46 4C 3D 75 43 3E 90 49 3E 43 44 3D FF 4B 3C 24
3F40 50 3D 73 42 3D 6F 00 C4 84 90 02 C4 90 CA F 1 C2
3750 F9 CA F3 AA F3 C4 3C 35 C4 E2 31 3D AA F9 90 EF

Ise this complete hexadecimal listing of the program if you
wish to prepare a paper tape or cassette to run the editor in
RAM, or if you are able to burn your own PROMs.

Once the text is in the buffer, you can edit it using the corn-
rands shown in the table. Note that the L, C, I, D, P and B
commands may all have arguments, to specify individual lines
or a group of lines. In fact the I command must have one
argument, to indicate where the insertion is to take place.

The argument number or numbers must precede the com-
mand letter. Thus to list lines 12 to 15, for example, you simply
twe 12, 15L followed by a carriage return.

To change a line, say line 34, you simply type 34C, a carriage
return, and then type in the new line text. Similarly to insert
a new line or lines before an existing line, say line 17, type
171 followed by a carriage return and then type in the extra
Ines. To delete lines, say lines 20, 21 and 22, type 20, 22D
and then a carriage return.

A single argument implies that the command should affect
only the one line. Two arguments imply that the command
should affect all lines between the two corresponding lines,
inclusively. Thus 15, 20C implies that six new lines are to be
fed in, replacing the existing lines 15, 16, 17, 18, 19 and 20.

(Continued on page 133)

ELECTRONICS Australia, December, 1976 	93

GETTING INTO MICROPROCESSORS

An ideal microcomputer for the beginner:

"Mini Scam"

The design of this microcomputer
started around October of last year with
the formation of the Newcastle
Microcomputer Club. It became obvious
at the inaugural meeting that there were
many people who would like to play with
their own microcomputer, developing
programming skills, yet who were unable
to afford even the lowest cost kits availa-
ble on the market. The problem
becomes even more acute when con-
sidering the cost of a terminal to interface
with these kits.

Various solutions to the terminal
problem have now been presented in
this magazine. Jim Rowe has described
an ASCII-Baudot translator for use with
surplus Baudot teleprinter machines (EA,
October 1976) and also a video data ter-
minal (EA, January and February 1977).
However, either of these alternatives

means an outlay of at least' about $200,
not including the microcomputer itself,
which brings the total cost to around
$300 using a small system such as the
SC/MP evaluation kit.

Recently Applied Technology have
released a SC/MP I/O kit, which inter-
faces with the SC/MP evaluation kit and
permits program and data entry via panel
switches. While this unit undoubtedly
fills a gap in available I/O hardware and
seems to be enjoying great popularity,
the total system cost is over $150 (inclu-
ding power supply). I also feel that it is
not suitable for a beginner to microcom-
puters because it employs an operating
system (in ROM) that was designed for
communication with a teletype using
hexadecimal characters in ASCII code.
Entry of information via the panel
switches thus involves a prior translation

of characters into this code, and one
tends to lose contact with the basic
organisation of the processor (CPU).
From the point of acquiring an under-
standing of microprocessor operation
(without the complications of an interve-
ning operating system) I feel this is
undesirable.

In searching for a suitable design, and
to overcome the problems mentioned
above, it became apparent to me that the
idea of using an available evaluation kit
together with an I/O interface was not
the way to go. As an operating system
was not desirable, there was no need for
read only memory .(ROM). Building a
system from scratch meant that costs
could be kept down as only those
features necessary were included. At the
same time, I personally wished to build
a much larger system than that shown
here, and ease of system expansion was
well to the fore in my design considera-
tions. The TOTAL cost of the computer
should fall somewhere between
$50-$100 depending upon your method
of construction, selection of com-
ponents, and upon how many existing
components you have that may be pres-
sed into service. This is most likely to be
so in the case of the power supply.

Excluding the power supply, the corn-
puter may be conveniently divided into
three basic units. These are the central
processing unit (CPU), the memory, and
the front panel input/output circuitry.
These three units communicate with one
another via three system 'bus' lines: an
address bus, as data bus, and a control
bus.

The address bus, comprising twelve
actual lines, is used by both the CPU and
the front panel I/O circuit to specify
which location in memory information is
to be sent or received. It is also used by
the CPU during program execution, to
select a particular input or output device
for communication with the outside
world.

The data bus, of 8 lines, enables the
passage of information between any two
of the three units in either direction. The
unit that does not participate in a given

At left is the author's prototype of his
Mini Scamp, with the full circuit shown
on the page opposite.

Forget about expensive terminals: here's a REALLY low cost and simple
microcomputer. It uses front-panel bit switches and LEDs for input and
output, in normal binary code, making it completely self contained.
Based on the National SC/ MP microprocessor, it comes with a
minimum of 256 words of RAM—but this is easily expanded up to
1024 words. We think it's the ideal way of getting into the exciting
world of microcomputers at low cost.

by DR. JOHN KENNEWELL Physics Dept., Newcastle University

66 	ELECTRONICS Australia, April, 1977

L LOV

oav
60V

say
Lay

90V

90V

VOV

Eat,
av

lay
oav

sna 101,11N00 	sna viva

ELECTRONICS Australia, April, 1977 	67

•

The inside of the author's prototype, which was built up using Veroboard. To help
readers we are producing a PCB pattern — see box at lower right.

GETTING INTO MICROPROCESSORS

data transfer is disabled (i.e. put in a high
impedance state) so that it does not
affect the transfer.

The control bus, of only 3 lines, is used
to specify whether information is to be
read from the memory, or is to be written
into the memory, and to place the CPU
in a 'hold' condition while it waits for
information to be given it via the front
panel or other slow peripheral device.

Twelve address lines enable a total of
4096 words of memory and/or peri-
pheral devices to be addressed indepen-
dently by the CPU. The concept of the
bus system described here makes pos-
sible the easy expansion of the computer
up to this limit, if so desired, by the addi-
tion of more memory and more I/O
devices. The SC/MP CPU is actually
capable of directly addressing up to 65k
of memory and/or peripherals. Although
this may be readily accomplished with a
latch and some buffer IC's it will not be
discussed here further.

Of the three -sections making up the
system the CPU is the heart, or rather the
brain, of the system. It comprises the
SC/MP integrated circuit microprocessor
chip, which requires two voltages for
correct operation, + 5V and —7V. The
—7V (actually —6.2V) is provided from a
nominal —12V line by means of a series
dropping resistor (56 ohms, 1W) and a
zener diode regulator. The other resis-
tors in the circuit are pull-up resistors, to
ensure that the appropriate pins on the
SC/MP have the correct potential for
normal operation.

Some of these potentials can be modi-
fied by switches on the front panel. For
instance, the DMA/CPU switch can dis-
able the CPU by placing zero potential
on the ENIN terminal of SC/MP. This is
necessary when data is being entered
into memory via a direct memory access
(DMA) from other front panel switches,
as described later. The RUN/HALT
switch controls the potential of the
CONTinue terminal, and enables sus-
pension of program execution at any
time. The RESET pushbutton must be
pressed before initial execution of each
program. This ensures that all internal
registers of the SC/MP are set to zero,
and that the first instruction fetched from
the memory will be from location one.

The capacitors on each of these
switched lines are crude debounce de-
vices, but have been found to be quite
adequate. A quick or snap action when
using the switches will always help in this
respect.

The 470pF capacitor connected be-
tween the X1 and X2 pins determines the
speed at which the processor will run.
Unlike many other microprocessors, the
SC/MP has all the required timing
generation circuitry built in, with the
exceptidri of this one external compo-
nent. The value of capacitance shown
here will run the . SC/MP at near its

maximum speed with a 'microcycle' time
of 2us. Typical program instructions in
the SC/MP take from 5 to 22 microcycles
to execute.

The memory section of the circuit uses
two low-cost 2112 static MOS memory
chips which together provide 256 words
of memory, each word of 8 bits in length.
These words occupy address locations
starting at 0 and extended to 255
(decimal) inclusive (0-FF hexadecimal).
The eight address pins on the devices are
fed from the eight least significant
address lines (ADO-AD7 inclusive).

To ensure that the devices only occupy
address locations 0-255, the remaining
lines of the address bus are fed to a
74LS138 one-of-eight decoder. The "0"
output of the decoder is then fed to the

chip select (CS) inputs of the memory
chips, so that the latter are only enabled
or "selected" when the four address lines
AD8 through AD11 are in the zero state.

Note that the 74LS138 is basically a
3-bit decoder, and has only three nomi-
nal code inputs. The most significant
address line AD11 is therefore fed to one
of the decoder's own chip select inputs,
to achieve the desired result.

Note also that the remaining outputs
available on the 74LS138 (1-7 inclusive)
may be used to provide selection signals
for additional memory devices. The
memory of the system can thus be ex-
panded very simply, merely by adding
further pairs of 2112 devices.

The front panel I/O section actually
has the greatest circuit complexity of the
three parts of the system—neglecting, of
course, the tremendous internal com-
plexity of the CPU and memory LSI chips.

It has two fundamentally different modes
of operation. When the DMA/CPU
switch is in the DMA position, then the
address switches have control of the
address bus. The contents of the memory
address indicated by these switches will
be displayed by the LED's (LO to L7) on
the front panel.

If it is desired to change the contents
of any particular memory location, the
address of that location is set up on the
address switches, and the data to be
inserted is set up on the data switches
(DSO to DS7). If the DEPOSIT pushbutton
is then depressed and released, the LED's
will confirm that the data has indeed
been stored in memory at that location.
In this way a program may be loaded into
memory. This is described in more detail

a little later, using a sample program.
As it is more convenient to represent

both data and addresses in hexadecimal
rather than binary notation, it will be
found convenient to group or delineate
these switches into fours. PVC marking
tape was used on the front panel of the
prototype computer as can be seen in
the accompanying. photograph.

In the second mode of operation, the
DMA/CPU switch is set to the CPU posi-
tion. In this mode, the address switches
are disabled, and have no control over
the address bus. The RUN/HALT may
then be set to RUN and the CPU will
begin to execute whatever program
instructions are in memory at this time.
Also in this mode, the data switches func-
tion as an input device at the
hexadecimal address 0801 (hex). Thus,
under program control, data can be read
into the CPU from the data switches. The

68 	ELECTRONICS Australia, April, 1977

BOTTOM
VIEW PL18 / 20VA

1000
16VVV E

E

LM309K

IN 	OUT
240V

+5V

1000
16VVVI

	 —12V (NOMINAL)
TO CPU CIRCUIT

1000
16VVV

Fig. 2: A simple power supply circuit for Mini Scamp. Any other supply capable of
delivering 5V at 500mA and —12V at 150mA could be used instead.

GETTING INTO MICROPROCESSORS

instruction to do this has the form

LD SWITCHES

where SWITCHES has a hex value of
0801. The LD instruction loads whatever
data is found at the address of the
operand (in this case address 0801) into
the accumulator register of the CPU.

To indicate to the external world that
it requires data (i.e., that the above
instruction has been executed), the CPU,
via signals on address tines ADO and
AD11, and on the read data strobe con-
trol line (NRDS) is used to turn on a data
request LED (DRQ). This is done via G3
which detects a coincidence of the
above three signals and toggles the flip-
flop which turns on the DRQ LED and
also pulls the NHOLD control line to
zero. This will cause the CPU to remain
in a 'wait' condition until the line returns
to a 'one' state. This will occur when the
deposit button is pushed, triggering the
monos, which after a small delay from
the 390-ohm and 0.0033uF RC network,
reset the flip-flop.

In this second mode the LED's act as
an output device with an address 0802
(hex), which is selected by G2 and activa-
ted by an instruction of the form

ST LEDS

where LEDS represents the hex addresS'
0802.

The astable multivibrator comprised of
the two BC108's is disabled in the CPU
mode, but in the DMA ,mode provides
a continuous string of latching pulses to
the 74C175's so that the LED's will always
display the contents of the address as
indicated by the address switches.

The two diodes in the circuit are used
as cheap 'OR' gates for simplification.
They could be replaced by another IC if
desired, but they have proved quite
adequate, and help to keep the cost and
total package count down. For similar
reasons the 7401 has been used as a
"poor-man's tri-state buffer", instead of
the more expensive buffer IC's manufac-
tured especially for tri-state applications.
There is no reason, however, why these
latter chips, such as the 81LS97, should

not be used if available.
If the system is to be run with only the

minimum amount of memory, (i.e., 256
words) then only 8 address switches are
required (28 = 256). The remaining
switch lines (AS8 to AS11) may simply be
left floating. This is equivalent to placing
a zero on these lines. Thus, depending
upon the amount of memory you have
available, anywhere from 8 to 12 address
switches will be required on the front
panel.

It should be noted however, that no
more than 2K of memory can be accom-
modated on this system without
modification. This is because addresses
above hexadecimal 0800 (or decimal
2048) are used to reference the data
switches and LED's.

Those of you who have closely
followed the circuit will have realised
that in fact the addresses 0801 and 0802
(hex) are not unique in their ability to
reference the switches and LED's respec-
tively. All twelve address lines instead of
only two, as used at present, would be
necessary to uniquely specify a single
device. Thus all addresses which have a
one in bit positions 0 and 11 will refer
to the data switches. These all lie at loca-
tions greater than 0800 (e.g. 0803, 0805,
08A9, etc.) and so will not conflict with
memory addresses less than this value.

Various techniques and methods may
be used in the construction of the
microcomputer. Veroboard was used to

build the prototype as shown in the pho-
tograph, and probably provides the
lowest cost way to go. Layout and com-
ponent placement is not critical. A single
length of Veroboard could be used, or
the three main sections could each be
constructed on smaller separate boards.
This latter approach allows one to more
easily interchange units if desired. (e.g.
to try an 8080 CPU, or to substitute a lar-
ger memory unit).

Printed circuit boards for each section
make for simpler construction and
greater flexibility, and several members
of our microcomputer club will probably
employ this approach. However, it
should be borne in mind that the cost of
PCB's and their respective sockets will

Mini Scamp: a PCB is coming
Dr. Kennewell's "Mini Scamp" microcomputer design seems to us
to be just what many of our readers have been waiting for: a really
simple way of becoming familiar with microprocessors and their opera-
tion. Because of its low cost, its ease of expansion,. and the fact that
it needs no expensive terminal, we believe it could become an
extremely popular project and a worthy successor to our own EDUC-8
design. To help ensure this well-deserved popularity, we are producing.
a low-cost PCB pattern for the project. All going well we hope to
publish details next month.

ELECTRONICS Australia, April, 1977 	69

*MOVING LIGHTS WITH INPUT
NOP
LDI
)(PAH i
LDI 8
XPRL

LOAD L.D
ST 	BITS

LOOP LD BITS
ST 	2(1)
RR
ST 	BITS
DLY 255
OLD COUNT
JNZ LOOP
PIP LOAD

BITS 	. BYTE 0
COUNT . BYTE 8

8888
888i
0803
8884
0806
0887
0089
0008
008D
088F
0018
0812
0014
8016
001.8
88iR
88i8

88
0488
35
C480
3i
CiBi
C81.0
C88E
C982
iE
C889
BFFF
8886
9CF3
90ED

88
88

GETTING INTO MICROPROCESSORS

*BINARY COUNT AND DISPLAY
8888 88
	

NOP
000i 0488
	

LDI
8883 35
	

XPAH
8884 C488
	

LDI 	0
8886 31
	

XPAL
0087 0982 LOOP 	ST 	2(1)
8889 8FFF
	

DLY 	255
088E A883
	

ILD 	COUNT
888D 98F8
	

PIP LOOP
888F
	

88 COUNT .BYTE 8
8818

Here are two sample programs to help you get going with
Mini Scamp. In both cases the hexadecimal numbers in the
first column are memory addresses, and those in the next
column are the actual code. Each pair of hex digits is an 8-bit
byte.

greatly increase the cost of the overall
unit, and may not be justified, particularly
if further expansion is not desired.

The LED's and their transistor drivers
were soldered onto a long narrow strip
of Veroboard and then the LED's were
glued through holes in the front panel.

The power supply requirements are
quite small, and any supply giving +5V
at say 0.5A and about -12V at 150mA
should prove adequate. Fig. 2 gives a
typical circuit for those wishing to build
the power supply using new com-
ponents.

It will be found that the cost of the
switches can be a considerable fraction
of the total computer cost. Those used
for the prototype were lever switches
(DPDT) from Tandy Electronics. Similar'
switches at a much lower cost from Elec
tronic Disposals in Little Lonsdale Street
in Melbourne have also been tried.
Although satisfactory to date, only time
will allow us to determine how many
repeated switchings may be made
before the contact resistance becomes
too large for correct operation. In this
regard, it is most desirable to wire both
poles of the above type of switches in
parallel.

Although this microcomputer was
conceived mainly as an educational
instrument through which an
understanding of the engineering and
programming concepts involved could
be learnt, there is no reason why it could
not be put to work in the role of a simple
controller. Detection of off/on states of
various devices, and the activation of
relays, etc., is most easily accomplished
using the sense inputs and flag outputs
available on the SC/MP chip. Anyone
wishing to make good use of the com-
puter should obtain a copy of the SC/MP
Technical Description from NS Elec-
tronics Pty. Ltd., in Bayswater, Victoria,
Or from their distributors. This manual
describes all of the program instructions
available on the SC/MP, and details what
each of these actually does.

On the programming side, you might
like to try your hand at writing a mul-
tiplication routine, a BCD to binary con-
version program, the converse, i.e. binary
to BCD, or even a simple program to
demonstrate the function of the logical
operations, AND, OR and EXCLUSIVE
OR.

Although it uses a different instruction
set than does the SC/MP, the advice on
programming contained in the EDUC-8
handbook provides valuable information
for those with little- prior knowledge in
this field. I have also found the hexa-
decimal conversion table printed in the
E.A. Yearbook (1976/77) to be of great
assistance when manually assembling
small programs.

In order to get you started along the
road in programming your microcom-
puter, I will describe two short demon-
stration programs.

The first program simply counts in
binary, displaying each number on the
LED's with a fixed delay between num-
bers. The delay is necessary to slow the
computer down sufficiently for you to
observe what is happening. The program
listing is shown in Fig. 3.

Ignoring the first two columns for the
moment, what we have is a list of instruc-
tions to the computer in 'Assembly' lan-
guage. The first instruction (NOP) does
nothing, and is ignored by the CPU, as
the first instruction actually executed is
at address one. The next four instructions
load the hex address 0800 into pointer
register 1. The following instruction (ST
2(1)) outputs whatever number is
presently in the accumulator to the
LED's. Note that the operand 2(1) means
the address stored in pointer register 1
plus 2 (i.e., 0802) which is, of course, the
address of the LED's.

The next instruction (DLY 255) creates,
the delay, while the ILD COUNT instruc-
tion adds one to the location called
COUNT (which has address

.
000F) and

then loads this number into the

accumulator, ready for display on the
LED's when the CPU jumps back (via the
JMP LOOP instruction) to the ST 2(1)
instruction.

The information in the second column
is the translation of the assembly lan-
guage instructions detailed above into
machine language form. These
hexadecimal numbers may be loaded
into the memory at their respective
addresses shown alongside in column 1.

First, set the RUN/HALT switch to
HALT, and the DMA/CPU switch to
DMA. Then set all the address switches
to zero, and set the hexadecimal number
08 on the data switches. Now press
DEPOSIT, and the LED's should also
display 08. Continue by setting the
address switches to 01 and the data
switches to C4. Depress DEPOSIT again.
As the LDI 8 instruction is a double-byte
instruction, the number 08 must now be
set into address 02 followed by 35 into
03, and so on, using the above pro-
cedure. When all locations up to and
including OF have been loaded, the pro-
gram is ready to be executed or run.

Set the DMA/CPU switch to CPU,
depress and release the RESET button,
and then set the RUN/HALT switch to
RUN, and the LED's should then be
counting. If not, return the appropriate
switches to HALT and DMA, in that
order, and check the contents of each
address by successively incrementing the
address switches from 00 to OF hex.

The second program shown in Fig. 4
demonstrates both the data input facility
of the computer and also the rotate
instruction (RR). When run, the program
will request (via DRQ) any number from
the data switches. For example, when
DRQ comes on, set hex 80 on the
switches, then press DEPOSIT. The single
light on the left will then be successively
moved to the right and finally 'rotated'
back to its initial position. After 256 rota-
tions, the program will then request a
new bit pattern to rotate.

ELECTRONICS Australia, April, 1977 	71

•

scratch with components, the SC/MP LCDS makes it
easy. And when you're through, the application cards
you've used in development go right into your system!

Sold? Give your distributor a call—and ask for an
ISP-8P/301. Or call (03) 729-6333. Not sold quite yet?
Here's a nice coupon.

National Semiconductor Corporation.

P.O. Box 89, Bayswater, Vie..3153.
Gentlemen:

I'm filling in this coupon so you can fill me in 00 your sc/lip program
development system.

Name 	 Title 	

Company 	

Address 	

City 	 State 	 P.0 	

National Semiconductor

SCRIMP
WITH SC/MP

Our low cost microprocessor development system.
You probably know all about how you can get

microprocessor chips for a song these days. (Our SC/MP,
less than ten bucks apiece in volume.)

Now you can develop their applications for a song,
too. $460.

Introducing National's SC/MP Low Cost Develop-
ment System (LCDS).

Not a kit or an evaluation tool, but a fully assembled,
tested system with all the features necessary for development
and testing of SC/MP hardware and software designs
for a very broad range of applications.

Software debug is easy because there's a built-in
keyboard and display.

Expansion is easy too, with a wide range of standard
application cards, including our ready-made RAM and
ROM/PROM cards.

Whether you prototype with cards, or start from

74 	ELECTRONICS Australia, May, 1977

01111•11111aww---...:.

Look what happened
to the Mini Scamp!

Just about everyone interested in
microcomputers seems to agree that Dr.
John Kennewell's Mini Scamp design has
great potential. By starting from scratch
with a SC/MP chip, and then designing
a simple RAM-orientated system around
it, he has produced an ideal microcom-
puter for the hobbyist and student.

It is fully self-contained, needing no
expensive terminal. Programs are fed in
via front-panel switches and LEDs, which
can also be used to communicate with
the machine when it is running—in simple
binary code, the actual language used by
the machine itself. What better way to
learn how computers work!

At the same time, it can be built for
around half the cost of any other
microprocessor based system, and
hundreds of dollars less than broadly
comparable earlier designs like our own
EDUC-8.

In other words, it is a design which
should appeal to a wide variety of peo-
ple, especially those still looking for a

way of becoming familiar with
microcomputers easily and at low cost.

While we were preparing Dr. Ken-
newell's article for last month's issue, the
conviction grew that the project de-
served to become a very popular one.
But we realised that one thing was lack-
ing: a low-cost PC board, to make it really
easy to build even tor those with little
previous experience.

We immediately resolved to design a
PCB for the project, to help ensure that
it wins the popularity it deserves. And we
managed to fit a small "stop press" box
in the April article, to let readers know
that a PCB was on the way.

Because of the box no doubt quite a
few readers have been waiting for the
current issue, for the promised PCB
design. As you can see, we have in fact
gone much further than this, and have
turned Mini Scamp into a full-scale
project. So that your wait should not
have been in vain.

How did this happen? Well, we

couldn't publish the PCB design without
trying it out first, to make sure it worked.
This meant getting together a set of ICs,
switches and other components, and at
the same time warning suppliers that the
project was coming—to ensure that read-
ers would be able to buy the parts. While
we were doing this we sought reactions
from suppliers also, to see if they became
as keen about the project as we were.

They certainly did. In fact, some of the
suppliers were so enthusiastic that they
offered to make some of the com-
ponents available to readers at special
prices.

For example NS Electronics have
offered to make available through their
distributors a special deal on the SC/MP
chip, all the other ICs, the transistors and
LEDs. These will be available for $36.21
including tax, or $31.49 to schools and
colleges who can claim a tax exemption,
until the end of June.

Similarly C&K Electronics are prepared
to supply the complete set of 18 toggle
switches and 2 pushbuttons direct to
readers for a package-deal price of
$14.65 plus 50c postage, or $12.74 plus
50c postage for those who can claim a
tax exemption. Their address is PO Box
101, Merrylands, NSW 2160.

When we told the story to well known
kits-n-bits entrepreneur Dick Smith, his
immediate question was why we weren't

With some help from component suppliers, we have been able to turn
Dr. Kennewell's Mini Scamp microcomputer design into a complete
full-scale construction project. With almost all of the circuitry on a single
PC board, it is now not just the lowest-cost complete microcomputer
system available, but the easiest to build as well!

by JAMIESON ROWE

78 	ELECTRONICS Australia, May, 1977

As these pictures show, Mini Scamp now really looks the part, comparing well with
machines costing much more. You should be able to build it for around $105 including
tax, and thanks to the new PC board it should take you only a few evenings' work!

planning to describe such an excellent
design as a full-scale construction
project. This would then allow his firm
and, others to produce a complete
kit ...

Needless to say, we decided there and
then to do just that. And thanks to quite
a bit of help from Dick Smith, NS Elec-
tronics, C&K, RCS Radio, Radio Despatch
Service and Bespoke Metalwork, we
have been able to produce the full
project in double-quick time.

As you can see, it really looks the part,
comparing very favourably with designs
costing three and four times the price.
Yet with most of the circuit on a single
PCB measuring 254 x 117mm, you should
be able to wire it up very easily in a few

evenings.

The basic design has 256 bytes of RAM
memory, plenty to let you cut your teeth
on basic programming. However we
have provided the PCB with data bus,
address bus and control signal access, so
that additional "outboard" memory may
be added very easily. In fact all you will
need to expand the memory to 1k bytes
is six more 2112 memory chips, a small
PCB or piece of perf-board to mount
them on, and some hookup wire!

We have even allowed for a couple of
additional address switches to be
mounted on the front panel, if you want
to expand the memory to 1k in this
way.

We have also brought out all of the flag
and sense pins on the SC/MP chip itself,
so that it should be possible to interface
Mini Scamp to a terminal later on if you
wish. If there. is sufficient reader interest
we may be able to tell you how to add
the "Kitbug" ROM ,into the system, with
its terminal interfacing and debug rou-
tines. This should again be a relatively
simple matter.

Wiring up the PCB should be quite
straightforward as we have prepared an
overlay diagram showing the position
and orientation of all parts. There is a
reasonable number of links, as the PCB
is single-sided to keep the cost low, but
not so many as one might have
expected.

ELECTRONICS Australia, May, 1977 	79

80 	ELECTRONICS Australia, May, 1977

PARTS LIST FOR
OUR MINI SCAMP

1 Case, 285 x 235 x 104mm
1 Printed circuit board, 254 x 117mm,

coded 77up5
18 SPDT miniature toggle switches, C

& K type 7101 or similar
2 Miniature pushbuttons, single pole

normally open type, C & K type
8532 or similar

1 stepdown transformer, with multi-
tapped 15V secondary at 1A. Type
2155 or similar 1

SEMICONDUCTORS

1 ISP-8A/ 500D microprocessor
(SC/MP)

i 2 2112 memory chips (256 x 4)
2 74C175 quad latches
1 74C10 triple 3-input gate
1 74LS138 decoder
1 74LS05 hex inverter
5 7401 hex inverters
1 7476 dual flipflop
1 74123 dual monostable
12 BC108, BC317 or similar transis-

tors
9 5mm diameter LEDs with panel

adapters (8 red, 1 green or yellow)
1 LM340T-5, 7805 or similar 5V/1A 3-

terminal regulator
4 1N914, 1N4148 or similar diodes
4 50V/1A rectifier diodes
1 6.8V/1W zener diode

RESISTORS

1W rating: 1 x 56 ohm
1/4W rating: 9 x 150 ohm, 1 x 390 ohm,

1 x 470 ohm, 1 x 2.7k, 2 x 4.7k, 2
x 6.8k, 1 x 8.2k, 19 x 10k, 2 x 18k,
20 x 27k, 2 x 100k

CAPACITORS
LV greencap polycarbonate: 1 x

1000pF, 1 x 3300pF, 1 x .01uF, 1 x
.047uF, 5 x 0.1uF

2 470pF polystyrene or NPO ceramic
1 680pF polystyrene or ceramic
1 2.2uF 35VW tantalum
1 4.7uF 35VW tantalum
3 22uF 6VW tantalum
1 47uF 6VW tantalum
1 100uF 16VW electrolytic
3 1000uF 16VW electrolytic

MISCELLANEOUS

Three-wire mains cord and 3-pin plug;
grommet and cord clamp; 40-pin DIP
socket for SC/ MP (PC type); 7 x nylon
PCB supports (Richco); 1 x 85 x 40mm
piece of utility PCB for LED drivers; 2
x 8-lug miniature tagstrips for power

2 supply wiring; 4 rubber feet for case;
connecting wire, solder, nuts, bolts,
etc.

At left is the PCB pattern reproduced
actual size. Etched and drilled boards
should be available from the usual
suppliers by the time you read this.

DECODING FOR
256 BYTE BLOCKS
OF EXTRA MEMORY---N

V.:8W "400.0.§.SA??4,4,2,40,007mogawig(.48.vm
' 	 ••••••.•••

• ••(';'...,

LM3407-5 or 7805
(BOLTED TO REAR

OF CASE)

-12V

0
0 ,0

EARTH
1000F +5V
16VW

+5V

2.2k

1N914 I 1N914 ono
.0011

+ 5V

4.7k

BC108,etc.

0 DATA
SWITCHES

101

DATA LINES

NWDS

1Q21—
12

DEPOSIT TIMING MODIFICATION

Incidentally the PCB hole spacing for
the SC/MP clock capacitor is 12.5mm, so
that readers who wish to substitute a
1MHz quartz crystal for the existing
470pF capacitor can do so easily. This
would perhaps be advisable when and
if you wish to interface the Mini Scamp
to a terminal, to ensure a stable and
predictable data rate.

Except for the SC/MP chip itself, all of
the ICs are mounted directly on the PCB
without sockets. A high-quality 40-pin
socket was used for the SC/MP because
of its higher unit cost.

We have not included the LED driver
transistors and their associated resistors
on the main PCB. This would have com-
mitted builders to using the binary LED
scheme, and we think that some may
prefer to use a pair of 7-segment displays
with hexadecimal drivers instead. By
leaving the drivers off the PCB, you can
take your pick.

The original 9-LED scheme has been
retained for our version of Mini Scamp,

---DATA BUS -)
LINES

Q1 -1.----i-4-1(.?e: ilkeeElt"4
LED 0-.--+,-.1 	

Q2-0.------rVllflfir 011.40-130-4;1
LED 1..-740, 	 a-4.

Q3 	 I•. ,: 	 8101.
LED 2...--rt‘ 	 6-0 ,

Q4-0.--74,
LED 3...--41k

HOW TO WIRE THE LED DRIVER
PANEL (9 DRIVERS IN ALL)

as you can see. This is because we think
beginners find a simple binary display
easier to follow. It will also be somewhat
cheaper than a hex display!

We wired the 9 driver stages on a small
piece of utility PCB, of the type having
an array of 4 linked-pad groups. By cut-
ting some of the conductors to form
pairs, the drivers were very easily wired,
as shown in the small diagram. The piece
of utility PCB measures only 85 x 40mm.

To reduce costs we elected to use one
of the imported DSE 2155 transformers.
As this provides only 7.5V per side on the
secondary, we were unable to use the

12.6V V 1 V 7.6V
TAP TAP TAP TAP

2155 TYPE TRANSFORMER
POWER SUPPLY WIRING

twin full-wave rectifier circuit suggested
by Dr. Kennewell last month. The posi-
tive rectifier is unchanged, but we have
substituted a half-wave doubler for the
negative supply. This runs from the
"12.6" tap (i.e., 5V with respect to the
earthed centre-tap), to produce the
desired —12V.

The only other change to the power
supply is that we found it necessary to
add a 100uF/16VW electro across the
output of the 5V regulator. The wiring of
the final supply is shown in a small
diagram, so you can copy it if you wish.

One further point: you will find that the
PCB incorporates a change to the
memory deposit circuit. In particular, we
have added an RC delay circuit and a buf-
fer transistor to the drive line for the data
switch gates, as shown in the diagram at
left. Drive is now taken from the Q2-bar
output of the 74123 (pin 12), instead of
from the Q2 output.

We found this modification necessary
to ensure fully reliable depositing with
the 2112 memory devices, which have a
critical requirement in respect to data
hold time.

Well, there you have it. We think you'll
agree that Mini Scamp has become quite
an exciting project—and an excellent way
to learn about microcomputers.

Wiring up the PCB should be fairly straightforward using the above diagram as a
guide. Note that the address and data bus lines are brought out only for future expan-
sion; this applies also to the flag and sense lines. Details of the LED driver and power
supply wiring are shown below and at right.

FROM
74C175's

ELECTRONICS Australia, May, 1977 	81

Announcing the Dick Smith Electronics Australia

Mini Scam p
Contest!

How inventive are you? If you can come up with a really
ingenious application for Mini Scamp, you could win a
complete microcomputer system valued at over $2000 .

Dick Smith Electronics and Electronics Australia magazine
believe that there is a far more exciting future for micro-pro-
cessors than merely providing ever more compact "number
crunchers". We believe that they are going to revolutionise
the electronics industry, and make it possible to perform all
sorts of down-to-earth tasks which until now have seemed
almost impossible. And we also believe that hobbyists can play
an important and pioneering role in developing these applica-
tions, using low-cost microcomputers like our recent Mini
Scamp design.

To encourage enthusiasts to dream up and develop interest-
ing new microprocessor applications, we are launching this
exciting new contest. The idea is simple—to the individual
enthusiast, student or hobby club who can come up with the
most intriguing and imaginative application for the Mini Scamp
microcomputer, Dick Smith Electronics will award an
outstanding prize: a complete "big brother" microcomputer
system valued at more than $2000, shown opposite.

We're not looking for way-out academic applications, but
down-to-earth practical ways of using microprocessors in the

home, office or school. Like controlling-a model train layout,
or running a home movie show or providing a washing
machine with custom programmable washing cycles . . .

The system you develop must use Mini Scamp, and its soft-
ware must fit in less than 1280 bytes of RAM and/or
ROM/PROM. It should preferably have been tried out in prac-
tice, to make sure there are no hidden bugs. Your entry should
include a detailed description of system operation, a complete
program listing with comments, and details of any custom in-
terfacing you have used.

Judges for the contest winner will be Mini Scamp's designer
Dr John Kennewell, entrepreneur Dick Smith and EA editor
Jim Rowe. Their decision will be regarded as final.

Entries must be accompanied by the official entry form
below (except in states where this requirement is illegal).
Entries should be postmarked no later than September 30th,
1977, so you have three months to work on your entry. The
winner will be announced in EA as soon as possible after that
date.

CONDITIONS OF ENTRY: Entries should represent the entrant's original work. Employees of Sungravure Pty Ltd, Dick Smith
Electronics Pty Ltd or any associated companies are not eligible to enter. Entries postmarked or delivered by hand later
than September 30, 1977, will not be eligible.

ri...m....I.u•w....................H•m•••••mmm.II.ummmu... 91
I
1 ENTRY FORM THE DICK SMITH—ELECTRONICS AUSTRALIA MINI I

I

I 	 SCAMP $2000 MICROCOMPUTER CONTEST I
I
ll Complete this form and attach it to your entry, posting them not later than 30th September, 1977,

1
a 111 to Microcomputer Contest, c/o Electronics Australia, Box 163, Beaconsfield, NSW 2014. A letter may
111 be used instead of the form in States where this requirement is illegal.

II 	 I

I NAME: 	 I
I 	 I
I ADDRESS: 	 I
I 	 I I 	 POSTCODE: 	 I
I 	 I
116......mmimumwm.........................1.......mumummodi
74 	ELECTRONICS Australia, July, 1977

•••

404011PREINiam..:

Here's what you can win:
ic A NATIONAL SEMICONDUCTOR SC/MP
DEVELOPMENT SYSTEM, WITH RESIDENT
MONITOR & TINY-BASIC INTERPRETER!

This is an ideal system for anyone wanting to do more
serious work with National Semiconductor's SC/MP. The
resident monitor-debug program is a very powerful one,
occupying 2k bytes of ROM. With it you can develop and
debug programs very quickly and conveniently. The system
has more than 2k bytes of RAM for user programs, too.

In addition, the system includes a 4k byte ROM card with
a resident interpreter program for National's "NIBL", a very
powerful extended version of TINY BASIC high level language.

With the ability to handle FOR . . . NEXT and DO . . . UNTIL
commands, NI BL lets you develop complex programs so easily
and so fast that you won't believe it. Ideal for computer games,
too!

TOTAL VALUE, $1242.00

* AN E&M ELECTRONICS VIDEO DATA
TERMINAL, COMPLETE WITH 12-INCH
SOLID STATE TV RECEIVER!

Designed to work with almost any standard TV receiver or
video monitor, the E & M Electronics EME-10 data terminal
offers high performance and operational flexibility at an attrac-
tive price. The version supplied will display 16 lines of 64
characters, has roll-up and roll-down scrolling and a cursor
to facilitate tabulation and similar functions. Data rate and for-
mat are fully programmable, although as supplied the terminal
is set to suit the system at left. A very compact and reliable
terminal, which provides full professional performance.

As shown the terminal will be supplied complete with a
mating 12-inch solid state monochrome TV receiver.

TOTAL VALUE, $773.50

Ideal for powering microcomputer systems, the Statronics
STA-53 supplies offer compact high performance with inbuilt
current limiting and over-voltage protection. The 5V/3A and
12V/2A units supplied are complete with mains cords & plugs.

TOTAL VALUE, $77.62

THE COMPLETE SYSTEM, READY TO RUN, IS VALUED AT $2093 12!

Isn't that worth an effort?
SO PUT ON YOUR THINKING CAPS, AND GET CRACKING • •

*TOGETHER WITH TWO STATRONICS
MODULAR POWER SUPPLIES!

ELECTRONICS Australia, July, 1977 	75

-.0.ag iaROROMOVIVW0gagnig,leMi .Mibr

More on Mini Scamp

One good thing about a popular
project like Dr. Kennewell's Mini Scamp
is that with so many people building it
up quickly, any errors or bugs preent
tend to show up sooner than otherwise!

For example, the May issue had only
been published a couple of days before
a reader rang to point out that there was
an error in the power supply wiring
diagram.

if you didn't see our note last month
about that error, it showed the wire from
the 12.6V transformer tap as being con-
nected to earth. In fact it should only
connect to the " + " end of the 1000uF
electrolytic capacitor, of course.

It took a little longer for any other bugs
to show up, but after a couple of weeks
we received reports of some builders
having trouble with the deposit timing
circuitry. Some units wouldn't load in
programs properly in DMA mode, while
others wouldn't load from the switches
reliably under program control.

When we looked into this, we found
a subtle timing problem associated with
the deposit timing delay circuit shown in
the May issue. With some 1N914 diodes
and BC108 transistors, charge storage
times were sufficient to slow down the
leading edge of the pulse used to gate
the data switches onto the data lines, and
improper loading occurred. Usually,
some or all of the bits loaded as "Vs",
regardless of the switch positions.

Happily, we found a simple way of fix-
ing this trouble. All that is required is to
reduce the value of the base pulldown
resistor shown as 10k, to 680 ohms. This
should produce reliable loading with all
devices.

In the meantime, Mini Scamp designer
Dr John Kennewell advised us that he
had found it desirable to add a 180-ohm
resistor in series with the deposit switch.
This prevents the switch from taking the
B1 input of the 74123 monostable right
up to the 5V rail, and thus prevents the
monostable from being spuriously trig-
gered by supply line transients.

Incidentally you may have noticed that
while D\r Kennewell's original circuit as
shown in the April article shows a DPDT
switch used for 51, performing the
DMA/CPU switching, we called for only
an SPDT switch in the parts list. This is
because the SPDT switch is quite capable
of doing the job, if its rotor is taken to
earth. In the DMA position it earths the
two wires from the PCB pads marked
"DMA/CPU SW A", while in the CPU
position it earths the single wire from the
PCB pad marked "DMA/CPU SW B".
Most builders seem to have deduced this
for themselves, but I mention it in case
you haven't got that far as yet.

If you make these few minor correc
tions to your Mini Scamp, you should
find that it works quite well. However
something which may become apparent

once you begin running programs is that
with the Mini Scamp as it stands, the
LOAD SWITCHES instruction tends to
result in an automatic STORE LE DS
operation, whether you want this to hap-
pen or not.

This occurs because of the 1 N914
diode tying the NWDS control line to the
Q2-bar output of the 74123 monostable.
The diode is used for DMA program
loading, serving no useful purpose in
CPU mode. However as it is still in circuit,
it is able to cause spurious writing into
the 74C175 LED latches, when the
deposit switch is pressed as part of a
LOAD SWITCHES instruction.

Again, there is a fairly simple way of
preventing this from happening. All that
is required is to'replace the existing SPDT
switch used for DMA/CPU selection,
with a DPDT type. The second section
of the new switch is then used to break
the connection between the 1N914
diode and the NWDS line, in the CPU
position.

You don't need to cut any PCB tracks
to make this change, because the diode
is normally connected to the NWDS line
via a wire link. All you need do is cut the
link, and connect the two cut ends to the
appropriate lugs of the , new DMA/CPU
switch.

There is another modification to the
basic Mini Scamp design which some
builders may care to make. Although it
requires a little more work, it is still fairly
straightforward and involves only a
handful of additional low-cost parts.

The purpose of this further modifica-
tion is to ensure that only a single loading
takes place from the switches when the
deposit switch is pressed in CPU mode,
in response to a LOAD SWITCHES
instruction having lit the DRQ LED. With
the existing Mini Scamp circuit multiple

Judging by the tremendous interest it has generated already, our Mini
Scamp looks like becoming the most popular microcomputer project
ever described. This article gives details of some simple modifications
and improvements to the basic design, to improve performance. It also
discusses simple techniques for providing parallel interfacing.

by JAMIESON ROWE

76 	ELECTRONICS Australia, July, 1977

+5V 	TO NWDS
•

	

18k 1 	 OPTIONAL

	

I 	 SWITCH

+5V

18k
680pF + 5V 470pF

+5V

1k

12 6?
K CK

10k
14 	15

13 	10 5 8 Q

DEPOSIT
11' 	2

74123/2

10k r
+5V

7476/2 Q g 74123/2

A -
4 12

P■IMP,

C
11

K 7476/2 CK

4
J

a

4 	FROM G3

	IN. TO DRQ

	111. TO NHOLD

	ram.

15 14 1N914

D2
1N914

 Ci

FIG. 1: MODIFIED MINISCAMP DEPOSIT SWITCH LOADING LOGIC
File No. 8/M /-

D3
1N914 2.2k

D4

O
1N914 	10.

.001uF
1N914

39011

3
1-070033uF
	WM`

DMA\ CPU 0

_
TO DATA
SWITCH

CONTROL
GATES

+5V

+5V

D5

10k
+5V 4-40ww--4)

10

1

A aie 	

TO ENIN ETC. 	TO ADDRESS
A 	A SWITCH

GATES

+ 5V 4. 	
10k DMA 	CPU

loading can occur if the CPU executes
another LOAD SWITCHES instruction
while the deposit switch is still pressed,
as the 7476 ORQ latch can re-trigger the
74123 via inverter 14. This is a side effect,
because 14 is in circuit mainly to ensure
that the 74123 can only be triggered in
CPU mode when the DRQ latch has
been set for a LOAD SWITCHES instruc-
tjon. If the 74123 were to be triggered at
other times, a program could be changed
and caused to "crash".

The only way of preventing multiple
loading with the circuit as it stands is to
insert delay instructions into your
program, so that one has time to release
the deposit button before the CPU can
get to the next LOAD SWITCHES instruc-
tion. This is not always convenient.

To obviate the multiple loading, 14 can
be used to gate the 74123 by means of
its clear input, instead of the Al trigger
input. This is done as shown in Fig. 1.

Note that the Al input of the 74123 is
now earthed directly, with the output of
14 now taken to the active-low clear in-
put on pin 3. As 14 is an open-collector
element, a 10k pullup resistor must be
added as shown.

Diode D1 from the DM A/CPU switch
is now taken to the input of 14, so that
the 74123 can be enabled in DMA mode
as before. The input of 14 is disconnected
from the Q input of the 7476 DRQ latch,
and connected to the Q-bar output via
diode D2 to achieve the correct logic
action. A further 10k resistor is used at
the input of 14, to form a single OR gate
with the two diodes.

Although this fixes the multiple loading
problem, one can still get occasional
faulty loads from the switches. This
seems to be due to spurious triggering
of the 74123 from the deposit switch, as
a result of the low slope produced by the
simple R-C bounce integrator.

Presumably the input of the 74123 can
become unstable during the transition

from logic low to logic high levels.
To fix this we suggest that you replace

the deposit switch with a SPDT type, and
use the originally redundant second half
of the 7476 device as a debounce latch,
as shown in Fig.1. This gives completely
reliable operation.

Note that Fig. 1 also shows the optional
switching between_ diode D3 and the
NWDS line, and the 680 ohm base resis-
tor in the deposit timing delay circuit.

To make these suggested modifica-
tions, you need to cut a small number of
PCB tracks and add a few links under the
PC board. We suggest you do this in the
following order, to make sure that you
don't lose track of anything.

1. change the 10k resistor at the base
of the BC108 used to delay the 74123
Q-bar output .signal fed to the data
switch control gates to 680 ohms.
2. cut the track between pin 1 of the
74123 and pin 10 of the 74LS05.
3. cut the track between pin 10 of the
74LS05 and the anode of D1.
4. cut the track linking pin 11 of the
74LS05 to the track joining pin 13 of the
74LS05 and pin 15 of the 7476.
5. remove the 470 ohm resistor and 47uF
tantalum electrolytic capacitor con-
nected to PCB point "DEP".
6. unsolder the wire connecting the
deposit switch to the PCB point "DEP",
at the deposit switch.

7. replace the deposit switch with a
momentary contact SPDT push-button
(C&K type 8121 or similar).
8. connect the NO and NC contacts of
the deposit switch to + 5V rail with two
10k resistors (at the deposit switch).
9. connect the common contact of the
deposit switch to GND.
10. drill two holes near pins 7 and 8 of
the 7476, and connect these pins to the
NO and NC contacts of the deposit
switch respectively.
11. drill a hole near pin 11 of the 7476,
and connect the loose wire attached to

PCB point "DEP" to pin 11 of the 7476.
12. connect pin 3 of the 74123 to pin 10
of the 74LS05.
13. connect pin 1 of the 74123 to pin 8
of the 74123 (i.e., earth):
14. connect the anode of D1 to pin 11
of the 74LS05.
15. connect a 10k resistor from the anode
of D1 to the + 5V rail (pin 14 of the
74LS05).
16. connect the anode of additional
diode D2 to pin 11 of the 74L505, and the
cathode to pin 14 of the 7476.
17. connect a 10k resistor from pin 10 of
the 74LS05 to the + 5V rail (pin 14 of the
74LS05).
18. join pins 2, 4, 6, 9, 12 and 16 of the
7476 to pin 11 of the 74123, and then con-
nect them to the + 5V rail via a 1k resis-
tor.

With these modifications, your Mini
Scamp should leave nothing to be
desired in terms of its internal operation.
But perhaps a few words are now in
order for the benefit of those readers
who are planning to use their Mini Scamp
to control external devices.

For simple applications, you may be
able to use direct interfacing to the flag
and sense lines of the SC/MP chip itself,
rather like that' used for the serial inter-
face shown last month. The SC/MP chip
has three flag outputs and two sense
inputs, and also two other pins designa-
ted "serial in" and "serial out". This
allows for a total of seven input-output
lines.

Fig. 2 shows how one of the flag lines
or the SOUT line could be used to con-
trol a small relay. It also shows how a
SPDT switch can be debounced and fed
to one of the sense inputs, or the SIN
input.

For more complex applications, you
may wish to provide Mini Scamp with full
8-bit parallel interface ports. This can be
done fairly simply, providing you can
write your program so that it isn't worried

ELECTRONICS Australia, July, 1977 	77

MINI SCAMP
	 11101111111M111111.110, 	

+5V

2.2k

SPDT
SWITCH

7400/2

TO SC/MP
SENSE

INPUT, ETC.

FROM SC/MP
FLAG OUTPUT

ETC.

2.2k

+5V

10k
4.7k

+5V

BC54$ ETC.

EM401 ETC.
5-6V

RELAY COIL

FIG. 2: SIMPLE RELAY & SWITCH INTERFACING

74C10/3 ADO 	S.

AD1

+5V

10k 	 74C10/3

FROM "5"
OUTPUT 	 WDS

OF 74LS138 	 FROM 11
74LS05/6

AD2 	 74C10/3

FIG. 3: SIMPLE LATCHED 8-BIT OUTPUT PORT
(ADDRESS 507 HEX)

AD3

74C10/3

FIG. 4: SIMPLE 8-BIT INPUT PORT
(ADDRESS 511 HEX)

DM81 LS95

DO D1

D2

74C175

03

D4

Q1

Q2

Q2

Q3

Q4

0

D7
O

D1
0

D6
O

O

05

D2

0

O

D4

D3

Q1 	
D1

D2

74C175

D3

D4

a-3

Q4

0
D3 	

D2 	

D4

Q2 	
D5

D6
Q3 	

O

O

0
D1 	

DO Q4 	 O

O
D7

FROM "5" OUTPUT 	
OF 74LS138

ADO 	

address lines ADO and AD3 are high and
the "5" output of the 74LS138 decoder
is low, corresponding to address 511
hex.

Hence you can read the data from the
port into the SC/MP accumulator by
executing a LOAD instruction which
references address 511. But because of
the simple decoding, you can also regard
the port as having address 513, 515, 517,
51B, 531 and so on.

Both of the circuits shown in Fig. 3 and
4 impose very low loading on the lines
SC/MP address, data and control lines so
you should be able to use them with Mini
Scamp even if you have expanded the
memory. However if you want to add a
number of different ports along these
lines, you may have to add extra buffer-
ine to ensure reliable operation.

‘7117175115Thrn111715171VR51517—
A small number of readers have found that
while their deposit switch functions cor-
rectly in DMA mode, it will not operate in
CPU mode. This appears to be due to exces-
sive voltage drop across the 390 ohm resis-
tor linking the Q1-bar output of the 74123
(pin 4) to the reset input of the 7476 DRQ
latch (pin 3). This prevents the DRQ latch
from being reset when the deposit switch
has been operated.

The cure is to reduce the resistor to 220
ohms and increase the value of the associa-
ted capacitor from 0 .0033uF to
0.0068uF.

The three diagrams above and at right
should give you some guidance on pro-
viding your Mini Scamp with interfacing
to the outside world.

by the ambiguous addressing which
results from incomplete decoding.

A simple latched 8-bit output port is
shown in Fig. 3. Two 74C175 devices are
used for the latch itself, providing both
active-low and active-high outputs for
the eight bits. These outputs could be
used to drive external circuits via buffers
like those used for driving the LEDs in
Mini Scamp itself.

As you can see, the address decoding
is quite simple, combining the "5" output
from the 74LS138 decoder with the ADO,
AD1 and AD2 address line signals to give
the port an effective address of 507 hex.
When a STORE instruction specifying this
address is executed, the WDS pulse from
11 is allowed to reach the clock inputs of
the latches, writing the data into them.

Because the gating does not sense
address lines 3, 4, 5, 6 or 7, the port effec-
tively occupies other addresses besides
507. For example it could also be ad-
dressed as 50F, 517, 51F, 527 and so on.
This shouldn't cause any strife as long as
you remember it when writing your
programs.

The same sort of simplified addressing
is used in the 8-bit input port shown in
Fig. 4. Here only a single 74C10 gate
element is used, in conjunction with an
internal two-input enabling gate
provided in the DM81LS95 octal buffer.
RDS pulses from inverter 12 are only
effective in enabling the buffer when

RDS FROM 12 	

ELECTRONICS Australia, July, 1977 	79

I/O CONTROL

REGISTER 	
111111111141111C110ATA I/O
REGISTER

INSTRUCTION

NSTRUCTION I
DECODE AND

CONTROL

ADDRESS
(HIGH)

POINTERS
(HIGH)

INCREMENTER

ADDRESS
(LOW)

POINTERS
(LOW)

ACCUMULATOR

EXTENSION
REGISTER

STATUS
REGISTER

latt
SC/MP 11 microprocessor

Introducing a new "fast and low"
version of our SC/MP: SC/MP II.

Fast! Twice as fast.
And low as you can get. In fact,

the lowest-power n-channel MPU on
the market. 225mW typical.

Another plus is that it now requires
only a single + 5V power supply.

What doesn't change are the things
that made SC/MP so almost-irresistable
in the first place. Multiprocessing

capability built-in, easy expandability,
low parts count, built-in serial I/O
register, control flags and sense
inputs, built-in delay timer instruction,
the availability of good design tools,
and a training program that teaches
you how to use them.

It's available off your distributor's
shelf. And of course, it's cheap.
(Otherwise, why would we call it
our Simple Cheap Micro-Processor?)

And that's our pitch.

r
N.S. Electronics
A division of N.S. Distributors Pty. Ltd.

P.O. Box 89,
Bayswater, Vic., 3153

Please send details of your
0 SC/MP II (ISP-8A/600D)
0 SC/MP II Training Program

Name 	
Company 	
Address 	
City 	
State 	 P.C. 	

National Semiconductor manufactures a
full line of microprocessors, including the
8-bit INS 8080A, the single-chip 16-bit
PACE, the bit-slice 16-bit IMP, the
four-bit INS 4004, and low cost COPS
microcontrollers.

L

M National Semiconductor Microprocessors

GETTING INTO MICROPROCESSORS

Assemble your own
Mini Scamp programs!

Once you have built the Mini Scamp, the next job is to write some
programs and run them. In most cases this will have to be done the
long way, using hand coding and entry. For those who haven't done
this before, the following article will show you how.

by PETER LAZARUS*

Simple' microcomputers like Mini
Scamp can only run programs which are
in the form of so-called "machine lan-
guage". This is really nothing more than
a string of 8-bit binary numbers, which
are stored in consecutive memory loca-
tions. Most of the 8-bit numbers are code
numbers representing particular instruc-
tions in the microprocessor's repertoire.

It is not all that easy for we humans to
visualise a program in its machine lan-
guage form, however, so programs are
actually written in what is called a "sym-
bolic language". The very simplest type
of symbolic language is where two-digit
hexadecimal numbers are used to repre-
sent the 8-bit machine language code
numbers; as you might expect this is
only slightly more convenient than true
machine language.

A more convenient type of symbolic
language is one where short easily
remembered mnemonic words are used
to represent each type of machine
instruction. Words like "STR" to repre-
sent a store instruction, "LD" to repre-
sent a load instruction, and "JMP" to
represent a jump instruction. A program
written in this sort of symbolic language
is very much easier to visualise and
follow from a human point of view.

Of course after a program has been
written and checked in a mnemonic lan-
guage of this type, it must still be transla-
ted into the equivalent machine language
code understood by the computer. This
translation into machine language is
known as "assembly".

With larger computers this assembly
can be done by the computer itself,
under the control of a specially-written
"Assembler" program. Or it can be done
by another computer altogether, under
the control of a suitable "Cross
Assembler" program.

*62 Collinson St, Keilor Park, Victoria 3033

For those with access to a larger com-
puter, assembling programs can thus be
quite easy. But for those of us who
haven't got access to a larger machine,
the task has to be done the long way. This
article aims to show you how to do this
for yourself, for Mini Scamp and other
small microcomputers based on SC/MP.

First of all, you will need to write your
program in mnemonic language. If you
haven't done this before, I recommend
that you get the SC/MP Programming
and Assembler Manual published by
National Semiconductor (Publication
Number 4200094B). It costs around $10,
but is virtually essential for serious pro-
gramming—particularly if you haven't any
previous experience.

The lower cost SC/MP Technical Des-
cription (Publication Number 4200079A)
has some information on instruction for-
mats, and an instruction summary, but
this isn't really enough unless you have

*BINARY COUNT AND DISPLAY.

NOP

LDI 	8

XPAH 	1

LDI 	0

XPAL 	1

LOOP 	ST
	

2 (1)

DLY
	

255

ILD
	

COUNT

JMP
	

LOOP

COUNT 	.BYTE 	0

Fig. 1: Dr. Kennewell's counting program
used here as a sample for assembly.

a fair amount of previous programming
experience.

Both publications are available from
National distributors, and also from
suppliers like Dick Smith Electronics and
Radio Despatch Service.

After writing a program, and before
attempting to assemble it into machine
language, you should take a sheet of
paper and execute the program yourself,
pretending to be the microprocessor.
Follow each instruction in the program
literally, writing the result at each step.
In this way you should find any errors,
and be able to correct them. It is impor-
tant to remove as many mistakes as you
can at this stage, as correcting them later
can involve much more effort.

Now we are ready to assemble the
program into machine language. To do
this the operation code or "op-code" for
each instruction must be found, together
with the number of 8-bit words or
"bytes" involved for each instruction.

To serve as an example, I will use the
simple program given in the April Mini
Scamp article. This is reproduced in
Fig.1.

A worksheet should now be drawn on
a piece of paper. The program should be
copied onto it in the space on the right,
labelled source code. The worksheet for-
mat is shown in Fig.2. For convenience
a list of the particular SC/MP instructions
used in the sample program, their
opcodes and formats are shown in
Fig.3.

The first task is to write the opcodes
of the instructions in the Code column.
At the same time the length column of
the worksheet can be filled.

The first instruction is NOP. From Fig.3,
we determine that the opcode for this is
X'08 (meaning 08 hexadecimal) and the
instruction length is 1. So put "08" in the
code column, and "1" in the length
column.

The second instruction is a load
immediate with an opcode of X'C4 and
a length of two bytes. So put "C4" in the
code column, and "2" in the length
column.

So far the process has been simple.
The next, Exchange Pointer High (XPAH)
instruction has a basic opcode of 34 and

86 	ELECTRONICS Australia, August, 1977

GETTING INTOMICROPROCESSORS

a length of one byte. However this one
is different to the previous ones. The
opcode must be modified to contain the
pointer register number. (When 'disp
(pointer)' is shown in the Format column,
the pointer register number is the one
written in brackets.) For all other instruc-
tions having 'pointer' in the format
shown in Fig.3, the opcode is similarly
changed. In the case of Jump if Not Zero
(JNZ) for example, the basic opcode is
X'9C, but if pointer two is to be used, it
becomes X'9E.

Theinstruction XPAH specifies pointer
1, so its opcode becomes X'35.

We follow the same procedure for all
the other instructions in the sample
program.

Address calculation is the next step.
Now that we know the length of each

4. This completes the first stage or "pass"
of the assembly.

The second stage is to resolve labels
and displacements. Labels are the names
given, for convenience, to statements or
locations in the mnemonic language ver
sion of the program. The example uses
two such labels, 'LOOP' and 'COUNT'.
Each label appearing in the operand area
has to be changed to a hexadecimal code
specifying its location in memory.

Displacements when specified in the
Format column of Fig.3, usually represent
the change of a label to a code defining
its location. Displacements can also be
explicitly defined, as in the DLY instruc-
tion in the example. Here, the 255 is the
displacement part-of the instruction,
used to specify the period of the delay.

Firstly, let's handle explicit displace-

actually required. This is because the
SC/MP increments its Program Counter
just before fetching the next instruction.

The rule for determining the displace-
ment for Jump instructions is:

disp = (address of label) — 1
+ two's complement of
(address of instruction + 1)

For all other label displacements the
rule is:

disp = (address of label)
+ two's complement of
(address of instruction + 1)

Although these are expressed in binary
notation, it is more convenient to think
in hexadecimal. To calculate the two's
complement of a hexadecimal number,
subtract each digit from X'F, write the
result, and then add one. For example,
to find the complement of X'25:
15-2=13 (X'D), 15-5=10 (X'A), giving
X'DA, then add one giving X'DB.

Now let's calculate the displacement
of label 'LOOP'. This is a Jump instruc-
tion, so the first rule applies.

Address Code Length Source Code

Instruction and
Format ■

Length Opcode Description. .

DLY 	displacement 2 8F Delay

ILD 	disp(pointer) 2 A8 Memory Increment and Load

JMP 	disp(pointer) 2 90 Jump

LDI 	displacement 2 C4 Load Immediate

NOP 1 08 No Operation

ST 	disp(pointer) 2 C8 Store

XPAH pointer 1 34 Exchange Pointer Low

XPAL pointer 1 30 Exchange Pointer High

Fig. 2: (above): Suggested format of a
worksheet for hand assembly of
programs.

Fig. 3 (right): Op codes and formats
for the instructions in the sample
program, for reference.

instruction, we can calculate the starting
locations or addresses of our instruc-
tions.

Using the SC/MP MPU, our program
should begin at address zero, as the
SC/MP will automatically start here after
reset is pressed.

Place zero in the address column next
to the first instruction. Add the first
instruction length to this to get the
address of the next instruction, and so
on. Note that the address must be written
in hexadecimal, not decimal. The
hexadecimal address can be directly
keyed on the Mini Scamp address
switches, while decimal values would all
have to be converted.

The data can be handled in the same
way as the instructions were. Next to
each .BYTE we place the value shown on
the right. In the example, .BYTE results
in a code of 00. For decimal eleven, we
would code X'OB (.BYTE 11) i.e., decimal
11 converted to hexadecimal OB. Alter-
natively, .BYTE expressions can be writ-
ten directly in hexadecimal, such as X'7D.
And in this case, the code is the same,
X'7D. After writing the code for the .BYTE
locations, the address can be calculated.
Each .BYTE occupies one byte—i.e., a sin-
gle 8-bit memory location.

The worksheet will now look like Fig.

ments. The two LDI instructions have a
displacement' of 8 and 0. These each
occupy one byte, and are written in the
code column as 06 and 00. Instructions
XPAL and XPAH do not have displace-
ments. The '1' is the pointer register, and
that has been handled previously. The
'ST' has a displacement of 02, and finally
the 225 displacement in the DLY instruc-
tion has to be changed to its hexadecimal
equivalent of FF.

To calculate label displacements we
Must distinguish between two kinds.
Firstly there are the labels of data areas
referenced by load or store instructions,
etc., and secondly there are labels used
in Jumps.

Labels used in jump instructions must
be changed to a displacement corres-
ponding to the address BEFORE the one

Address of label:
	

0007
Address of instruction + 1: 000E
Two's Complement
	

FFF2
Add:
	

FFF9
Subtract 1: 	 —1
Result (take last two digits):

	
FFF8

So the displacement is X'F8.
For the label 'COUNT' use rule two.

Address of label: 	 000F
Address of instruction + 1: 000C
Two's Complement 	 FFF4
Add: 	 0003
Result (take last two digits): 03

Note that in both types of displace-
ment calculation, if the first two digits are
anything other than X'00 or X'FF, then the
displacement is greater than 127, and
with SC/MP a different addressing
scheme must be used. Also a displace-

ELECTRONICS Australia, August, 1977 	87

GETTING INTO MICROPROCESSORS

ment of X'80' (-128) is not to be used,
as SC/MP will use the extension register
for the displacement.

In these examples the pointer register
is zero (none was specified in brackets)
indicating the Program Counter. If a
pointer register is to be used, then the
address of the instruction plus one is to
be replaced by the address loaded into
the pointer register. This applies to both
the above rules.

Now our program is fully assembled.
It will look like Fig. 5. To enter into the
memory, we consider only the address
and code parts of the worksheet. Enter-
ing programs into the Mini Scamp was
described in Dr. Kennewell's first article,
in the April issue.

Lastly, a word about program altera-
tions. If you want to change an instruc-
tion, it can be done provided the new
instruction length is equal to or shorter
than the original. If the length is equal,
then change the hexadecimal code to
reflect the new instruction. If the length
is shorter, the new instruction occupies
the first byte and a NOP (X'08) can be
used to occupy the second byte.

To add extra instructions in the middle
of a program can involve a lot of work—
you have to re-assemble the whole
program again! The easy way is to add
them at the end of the program, and
provide a Jump at the point you want
them executed. Say for example we
wanted to add three extra instructions
after label 'LOOP' in our example. The
three extra instructions would be added
at the end (address X'0010). The DLY
instruction can be replaced by a JMP
instruction to transfer control to address
X'0010.

Address Code Length Source Code

0000 08 1 NOP

0001 C4 2 LDI 8

0003 35 1 XPAH 1

0004 C4 2 LDI 0

0006 31 1 LOOP XPAL 1

0007 C9 2 ST 2 (1)

0009 8F 2 DLY 255

000B A8 2 ILD COUNT

000D 90 2 JMP LOOP

000F 00 1 BYTE 0

Fig. 4: How the worksheet for the sample program should look after op codes, lengths
and addresses have been added to the source code.

This technique can be particularly
handy for tempor-ary repairs to a
program, to get it going. Whether you
leave the "patches" in permanently, or
rewrite the program later to make it more
elegant, is up to you.

Now it's your turn to write and assem-
ble some programs. Try simple programs
of no more than 20-30 statements at first,
as you could quickly get discouraged
attempting larger ones initially. You might
attempt assembly of the other example
given in the April issue, to check your
understanding.

We have to add the DLY back again
before the three new instructions, and
add another JMP at the end to return to
X'000B. The program would look like:

LOOP ST
	

2(1)
JMP
	

EXTRA
RETN IDL
	

COUNT

COUNT .BYTE 	0
EXTRA DLY 	 255

Extra instructions (3)
JMP 	 RETN

Address Code Length Source Code

0000 08 1 NOP

0001 C4 08 2 LDI 8

0003 35 1 XPAH 1

0004 C4 00 2 LDI 0

0006 31 1 XPAL 1

0007 C9 02 2 LOOP ST 2(1)

0009 8F FF 2 DLY 255

000B A8 03 2 ILD COUNT

000D 90 F8 2 JMP LOOP

000F 00 1 COUNT .BYTE 0

Fig. 5: The worksheet for the sample program when fully assembled, with all
displacements added in the code column.

Resident Assembler
for the SC/MP LCDS

National Semiconductors has announ-
ced the release of a line-by-line resident
assembler for the SC/MP Low Cost
Development System (LCDS). Known as
SUPAK, the assembler comes in eight
512-byte PROMs or ROMs, which plug
into a standard ROM/PROM card.

In the 4k-byte firmware package are
actually three programs: a line-by-line
assembler, a paper tape line editor and a
PROM tape punch program.

The line assembler accepts a program
written in limited SC/MP assembly lan-
guage from a keyboard or paper reader,
and assembles it directly into RAM. The
editor allows insertion, deletion or
replacement of lines in program source
code, while the PROM tape punch will
punch out a selected part of RAM for
PROM programmers such as the DATA
I/O, in appropriate format.

Priced at $300, SUPAK will be available
shortly from NS distributors.

88 	ELECTRONICS Australia, August, 1977

2 3 4 5 7 1 6
INPUT

GETTING INTO MICROPROCESSORS

Using Mini Scamp ta
generate random numbers
Here is another article by the original designer of the Mini Scamp
project, this time to help you become proficient at programming. It
explains how a computer may be used to generate random and pseudo-
random numbers, and gives a Mini Scamp program which demon-
strates pseudorandom number generation.

by DR JOHN KENNEWELL
Physics Department, Newcastle University

A program that generates a sequence
of random numbers finds many applica-
tions in the world of computing. Such
programs were used in one of the first
electronic computers ever constructed,
at the Los Alamos laboratories during the
second world war. Here, a technique
known as 'Monte Carlo simulation'
employed random numbers to calculate
the critical masses of uranium or plu-
tonium needed for a nuclear explosive
device.

Many games programs employ ran-
dom number generators. These enable a
computer to simulate the tossing of a
coin, the throwing of dice, or the choos-
ing of a card. To a certain extent random
number generators can be used to make
a computer appear more intelligent, or
perhaps we should say more human. This
is achieved by having not one, but a list
of possible responses to any given situa-
tion, and then using a random number
to decide which of these responses will
be actually given at any particular time.

In larger computers most random
number programs use the mathematical
expression

R„,, = (P x Rn) modulo Q
to generate a sequence of random num-
bers. Rn is the last random number cal-
culated, and this is used to produce the
next random number R„,1. To start with,
R,, can be put equal to any number, and
this number is termed the 'seed', from
which all later numbers will 'grow'. P is
a suitable prime number and Q is usually
2" where N is the number of bits per
word in the computer (e.g., N = 8 for
Mini Scamp). The expression 'modulo'
means that the product P x R„ is divided
by Q and only the REMAINDER is
retained. For example 9modulo5 = 4 or
7modulo3 = 1. This type of modulo
division is done very simply if Q = 2"

by simply ignoring the fact that overflow
has occurred in the multiplication of
P x Rn.

The above procedure, while quite sim-
ple, and not impossible to program for
Mini Scamp, does require a multiplica-
tion routine, which could use up a con-
siderable number of memory locations.
An alternative random number generator
can be obtained by simulating a shift
register with feedback (see Fig. 1). Start-
ing with any number except zero in the
shift register, the next number in the

DIRECTION OF SHIFT
	 S.

7-BIT SHIFT REGISTER

EXCLUSIVE OR
GATE

Fig. 1: A 7-bit pseudorandom sequence
generator as implemented in hardware.

sequence is obtained by shifting all bits
in the register one place to the right. Bit
7 will be lost, and bit 1 is formed by
EXCLUSIVE-ORing bits 6 and 7 (termed
the feedback bits) of the initial number.
Following numbers in the sequence are
generated by simply repeating the above
procedure.

In point of fact the above method does
not produce truly 'random' numbers. It
would be more correct to say that it
generates a pseudorandom sequence of
numbers, because given any starting
number,. the sequence will always be
fixed. In the case of a 7-bit register, the

sequence will consist of 127 different
numbers before it then starts to repeat.

It turns out however, that such a
pseudorandoM sequence is more useful
in programming than a truly random
sequence, particularly when first testing
a program. Imagine testing a program
that uses totally RANDOM numbers.
Every time you ran it, you would obtain
different results. Under these conditions
it would be very difficult to tell whether
the differences were due simply to the
random numbers, or to a fault in your
program. With a pseudorandom
sequence you know that, as long as you
start with the same 'seed' number each
time, the results will be repeatable.

As long as the sequence is made large
enough, a limited number of values from
the sequence will always appear random.
The randomness of such a sequence can
also be increased by considering only a
smaller number of bits than are used in
the shift register (e.g. the lower 8 bits of
a 15-bit register).

A program to implement the above-
mentioned procedure is given here for
the Mini Scamp. The accumulator is used
as the shift register. Excluding the NOP
instruction, the next four instructions are
concerned with loading pointer register
one with the base address for the LED's
(X'0800). In this way, each random num-
ber generated can be displayed on the
front panel. The next instruction loads
the accumulator with the seed number
which has been planted in location
'X0028, and as long as this is not zero the

INPUT
A

,
INPUT

B
OUTPUT

Z

0 0 0

0 1 1

1 .0 1

1 1 0

Here is the truth table definition of the
exclusive-OR function, for reference.

ELECTRONICS Australia, August, 1977 	91

Fig. 2 (left): how to
make pseudoran-
dom generators
using shift registers
of different lengths.

At right is the listing
for the author's
program to dupli-
cate the function of
the circuit of Fig. 1.

*RANDOM NUMBER GENERATOR
NOP
LDI 	0
XPAL
LDI 8
XPRH

RANDOM LD 	RND
JNZ START
LDI

START ANI X'03
JZ 	ZERO
CAI 2
JP 	ZERO
LDI 	X'80
JMP FIN

ZERO LDI 0
FIN 	OR 	RND

SR
ST 	RND
ST 	2(1)
DLY 255
DLY 255
JMP RANDOM

RND 	BYTE 6?

0000
0001
0.003
0084
0006
000?
0009
0008
0.00D
000F
0011
0013
0015
0017
00i9
0018
001D
001E
0020
0022
0024
0026
0028

08
C400
3i
C488
35
CO20
9CO2
C401
D483
9808
FCO2
9404
C480
9002
C400
D80C
1C
C809
C902
8FFF
8FFF
90DF
43

RRL SRL

MOST SIGNIFICANT WORD
MSB

-

7- 6---

-

■

--5---

- 	-,

4--

- 	-

-3 --■

- -

V

2 --■ 1 -...

-

0

LEAST SIGNIFICANT WORD
LSB

7 -.6 -.....-5 -.....4-......3 -...-2 -.....1-......0.-. cy/L.
THIS
BIT

LOST

2 	3 	4 	5 	6 	7 	 8 	9 	10 11 12 13 14

BIT NUMBER IN SIMULATED SHIFT REGISTER

-EXCLUSIVE OR
GATE

	Qt 	

15

Fig. 3: Suggested way of simulating a 15-bit sequence generator.

GETTING INTO MICROPROCESSORS

Shift Register
Length (bits)

Feedback
Bits

•

Sequence
Length

3 2,3 7

4 3,4 15

5 3,5 31

6 5,6 63

7 6,7 127

8 2,3,4,8 255

9 5,9 511

10 7,10 1023

11 9,11 2047

12 2,10,11,12 4095

13 1,11,12,13 8191

14 2,12,13,14 16383

15 14,15 32767

16 11,13,14,16 65535

bit to be fed back to bit 1 can then be
computed. If however, the seed is zero,
a 'lock-out' condition will occur, as the
EXCLUSIVE-OR of 0 and 0 is always 0.
To avoid this possibility a value of 1 is
thus placed in the accumulator.

The ANI X'03 instruction is now used
to mask off all bits except 6 and 7, the
lowest significant bits, as these are the
feedback bits. Note that the most sig-
nificant bit of the accumulator is ignored
as far as the random numbers are con-
cerned, leaving the 7 lower bits as
required.

After the mask has been applied, the
accumulator may contain any number
from 0 to 3 inclusive. If it is zero, then
the new bit one will be zero (JZ ZERO).
If 2 is subtracted from the accumulator
(CAI 2) and the result positive (initial
number would have been 3 in this case)
then the bit fed back will again be zero
(JP ZERO). If neither of these conditions
is true, then either bit 6 or bit 7, but not
both, would have been one, and the bit
to be fed back should be one. This bit
is loaded temporarily into the most sig-
nificant bit of the accumulator (either by
LDI X'80 or LDI 0, whichever is
appropriate) OR'ed with the original ran-

dom number (OR RND) and then shifted
right (SR) one place.

The newly created number then
replaces the old random number in loca-
tion X'28 and is also displayed on the
LED's (ST 2(1)). The delay instructions
slow the sequence down sufficiently for
you to observe what is happening.

If you wish the program to stop after
each new number generated, then
replace the second delay instruction at
location X'24 by the instruction LD 1(1)
which has the hex code C101. This will
cause the machine to hold with the DRQ
light turned on until you press the
deposit button. What you deposit into
the accumulator is unimportant, as it is
ignored by this program. Using this
method you can either write out the
complete sequence, or simply determine
mentally what the next number in the
sequence should be, and then press
deposit to test your prediction.

You will probably note that if you keep
your finger on the deposit button, the
machine as originally described will con-
tinue to sequence as before (actually fas-
ter, since one delay has been omitted).
Thus, if you only want one number at a
time, you must depress and release the
deposit button quickly (in less than one-
quarter of a second). The reason for this

behaviour is that, with deposit activated,
the mono in the circuit will be con-
tinuously enabled, and if the SC/MP CPU
requests a new data value (as it will each
time around the program loop), it will
have one provided it immediately
without having to go into the hold state.
This won't happen however, if you have
modified your Mini Scamp as shown in
the July issue.

It is possible to write a similar program
to simulate shift registers of any other
length desired. Fig. 2 shows the
appropriate feedback bits to use, and the
length of the sequence generated for
other length registers. After becoming
familiar with the program presented
here, you might like to try your hand at
a program for a longer sequence.

A register length of 15 is quite easy to
implement using two 8-bit words. The
word containing the lower 8 significant
bits is subject to exactly the same test as
the for the 7-bit register. However, the
bit to be fed back is placed in the MSB
of the word containing the higher sig-
nificant bits. Then after clearing the carry/
link (CCL), a rotate right with link (RRL)
is performed on this word, causing the
LSB of the word to be shifted into the
carry/link register. If now a shift right
with link (SRL) is performed on the other
word, this bit will be shifted into this
lower word. The procedure is illustrated
in Fig. 3. In this way it is possible
to simulate a register of any length
whatever.

In actual use, a program such as this
would be written as a subroutine in part
of a larger program. Each time the main
body of the program called the subrou-
tine, it would calculate a new random
number for use by that program. In many
cases, only a yes/no type decision may
be required, and thus only one particular
bit of the random number need be con-
sidered.

ELECTRONICS Australia, August, 1977 	93

More programs for

MINI SCAMP
With many hundreds of Mini Scamps now in operation, quite a bit
of software is being generated. Here are some useful utility
routines which have been sent to us by interested readers.

The first routine comes from a reader
in Cheltenham, Victoria, Mr C. B. Cur-
now. It is designed to solve one of the
main problems in hand assembly of
programs calculation of instruction
displacements. Needless to say this
saves time and tempers, as well as ob-
viating possible errors.

Mr Curnow introduces the routine as
follows:

"Calculating short positive dis-
placements by hand is a relatively sim-
ple job. However, when the displace-
ment is negative or greater than the
base of 16, one has to be careful to
avoid mistakes. I found the article by
Peter Lazarus in the August edition of
EA of particular help in this regard.
Nevertheless calculating displacements
in anything but the shortest programs
can become tiresome. I hadn't been

doing this long before I decided to use
the computer itself to help me by doing
all the hard work.

"With the program enclosed it is
simply a matter of feeding in the ad-
dress of the instruction, the address of
the label, and whether the displace-
ment is for a jump instruction or not.
These are fed in via the data switches in
succession, in response to the DRQ
light. The LEDs will then display the ap-
propriate displacement, which can be
recorded.

"The heart of the program is the set
of instructions LDI 0, SCL and CAD,
which calculate the two's complement
of the required number. I have found
this little program saves a lot of time
when writing programs, and thought it
might be of interest to other readers."

The remaining two routines come

from a reader in Slacks Creek,
Queensland, Mr Mike Nicholls. The
routines are designed to be used
together, in order to print or display
data stored in the Mini Scamp memory
at high speed: 9600 baud. Mr Nicholls
introduces the routines as follows:

"I thought readers might be in-
terested in a 9600 baud print routine for
Mini Scamp and other SC/MP systems.
It may be particularly useful to those
people who, like myself, have a SC/MP
system connected to their video ter-
minal using the EME-1 display module.
The program is quite original, being the
result of a couple of late nights spent
juggling with microcycles and the
SC/MP instruction set.

"The main problem encountered in
trying to output information at this
speed is lack of time to process the
data. At 9600 baud, the smallest ele-
ment is 104us wide. With a 1MHz clock
on the SC/MP this means only 52
microcycles in which to serialise data
out of the system, and also keep a

0000 08
0001 C408
0003 35
0004 C400
0006 31
0007 C101
0009 C824

;CALCULATE DISPLACEMENT

NOP
LDI 	8
XPAH 	1
LDI 	0
XPAL 	1

NEW: 	LD 	1(1)
ST 	LABEL

0008 8FFF DLY 255
000D C101 LD 1(1)
000F C81F ST INSTR
0011 A81D ILD INSTR
0013 03 SCL
0014 C400 LDI 0
0016 F818 CAD INSTR
0018 F015 ADD LABEL
001A C815 ST ADDR
001C 8FFF DLY 255
001E C101 LD 1(1)
0020 9C04 JNZ R1
0022 COOD RO: LD ADDR
0024 9002 JMP DISP
0026 8809 R1: DLD ADDR
0028 C902 DISP: ST 2(1)
002A 8FFF DLY 255
002C 90D9 JMP NEW
002E 00 LABEL: .BYTE 0
002E 00 INSTR: .BYTE 0
0030 00 ADDR: .BYTE 0
0031

;ENTER DATA WITH REQUEST
1.ADDRESS OF LABEL
2.ADDRESS OF INSTRUCTION
3."1" FOR JUMP INSTRUCTIONS

"0" FOR ALL OTHERS

The routine sent in by C. B. Curnow. It
saves time when writing programs by
using the computer to calculate the
instruction displacements.

;FETCH CHARACTER ;9600 BAUD PRINT

08 NOP 08 	 NOP
C413 LDI 19 01 	 XAE
C823 ST COUNT 0401 	 LDI 	1
C4FF LOOP: LDI 255 07 	 CAS
8FFF DLY 255 C480 	 LDI 	-128
881D DLD COUNT 78 	 CAE
9CF8 JNZ LOOP 01 	 XAE
C4XX LDI XX 08 	 NOP
35 XPAH P1 C4F7 	 LDI 	-9
C4YY LDI YY 01 	LOOP: 	XAE
31 XPAL P1 07 	 CAS
C4AA NEXT: LDI AA 04 	 DINT
37 XPAH P3 10 	 SR
C4BB LDI BB 01 	 XAE
33 XPAL P3 F401 	 ADI 	1
C501 LD @ 1 	(1) 9CF7 	 JNZ 	LOOP
9804 JZ OUT 3F 	 XPPC P3
3F XPPC P3
90F3 JMP NEXT
C400 OUT: LDI 0
37 XPAH P3
C400 LDI 0
33 XPAL P3
3F XPPC P3
0000 COUNT: BYTE 0

;XX IS HIGH ORDER BYTE OF DATA FIELD STARTING ADDRESS
;YY 	IS LOW ORDER BYTE OF SAME
;AA 	IS HIGH ORDER BYTE OF "PRINT 9600 BAUD" START ADDRESS
;BB IS LOW ORDER BYTE OF SAME

The two routines submitted by Mike Nicholls. The "9600 baud print" routine is at
top right, with the longer "fetch character" routine to the left.

82 	ELECTRONICS Australia, March, 1978

check on the number of bits to go
before the word finishes. This tally must
be kept, but a memory reference in-
struction such as a DLD or an ILD,
A hick one would normally use, takes 22
microcycles and hence makes the
tuning excessive.

"A way out, and the method used
here, is to store the count in the exten-
sion register. The data is stored in the
accumulator, so that either can be
operated upon by accessing via XAE in-
structions.

"Further savings were gained by set-
ting the start bit first, then setting up
the data and count in this time. One
point to note is that the status register is
affected by this routine due to the CAS
iinstruction in the loop. However, it may
be saved if desired by using store and
goad routines either side of the print
program. The 9600 baud serial data exits
from the FO pin of the SUMP.

"The program may reside anywhere
memory and may be called from

anywhere since it is self-contained. It is
!intended to be used with 7-bit ASCII
code, which is the normal format, and
the program prints the data which is in
the accumulator when it is called.

"I have also enclosed a second
program which may be used in con-

nction with the high speed printing
routine if it suits the application. The
program will run through a data field in
memory, printing each character via
the 9600 baud print routine until it
reaches the end of the data field.

"The data field is assumed to start in
the memory at address XXYY. It
assumes the 9600 baud print routine is
vacated in memory also, with starting
address AABB. The program continues

binting until it encounters a zero data
yte, which is assumed to terminate the

data field. Control is then returned to
IC/bug, at location 0000.

"A delay of five seconds is placed at
the start of the program, to allow
saitching the terminal from 110 to 9600
baud before the program begins out-
putting characters. When control is
returned to Kitbug at the end of pr4in-
ling, the terminal must again be switch-
ed back to 110 baud.

A better way would be to have logic
lo allow software control of terminal
baud rate, via special control
characters.

-The changes made to the EME-1
module in the video terminal are
minimal. All that needs to be done is to
change the wiring to the baud rate
sn itch S3 so that it switches between
110 and 9600 baud, in place of the
original 110-300 baud function. This
simply involves changing the switch
connection from pin C of LK13 to pin

Well, there you have them. Three
umeful little items of software for Mini
Scamp, by courtesy of C. B. Curnow
and Mike Nicholls. Our thanks to them,
ard we hope other Mini Scamp users
lind the routines of interest.

ELECTRONICS Australia, March, 1978 	83

DISPLAY X'FF

Reaction time program
for Mini Scamp
Here is another simple program for Mini Scamp, from its designer
Dr. John Kennewell. Designed to show the use of interrupt by DR JOHN KENNEWELL
programming, it measures human reaction time in hundredths of a Physics Department, Newcastle University
second. The additional hardware required is minimal: a pushbutton
switch and a resistor!

The program to be described here
can be used to measure your reaction
time and display it in one-hundredths
of a second on the LED's of Mini
Scamp. Only minimal external
hardware is required, and the program
makes use of the interrupt facilities
provided on the SC/MP CPU chip.

The concept of interrupt program-

START

SET POINTER 1 FOR
BASE ADDRESS

OF LEDS

SET POINTER 3 FOR
INTERRUPT SERVICE
ROUTINE ADDRESS

SET TIME = 0
I 	 1

I

WAIT SEVERAL
SECONDS

i

DISPLAY X'AA ON
LEDS AND ENABLE

INTERRUPT

v(. 	

IF AND WHEN AN
INTERRUPT OCCURS

-- -

INTERRUPT SERVICE
ROUTINE

i

*

DISPLAY THE VALUE
IN TIME ON
THE LEDS

i
I

(HALT PROGRAM

FIG. 1

ming is a very important one, and is
employed in many situations where
slow peripherals (e.g., a keyboard) are
communicating with the computer. In
this instance, it would be a waste of
time if the CPU was almost permanent-
ly in the hold mode waiting for a
character to be input from the
keyboard. On the other hand, if the
CPU went away and did something in-
stead of waiting on the keyboard, it
might miss the character, which could
be input at any time. The resolution of
this problem lies in the use of interrupt
programming. In this mode of opera-
tion, the CPU does what it will most of
the time, but as soon as a signal appears
at its interrupt input, it suspends what it
is doing and jumps to a specified
program routine to "service" the
device that created the interrupt (in this
case, to accept the next character from
the keyboard).

In the SC/MP, the sense A input also
serves as the interrupt input. However,
the interrupt mechanism is only enabl-
ed after an IEN instruction has been ex-
ecuted in the program. It may also be
disabled, with a DINT instruction.

If, at any time after an IEN instruction
has been encountered, the sense A in-
put goes high, the CPU will complete
execution of the instruction it is
presently working on, and then will
jump to whatever address is contained
in pointer register 3. It is thus essential
that register 3 has been loaded with the
starting address of the interrupt service
routine, prior to giving the IEN com-
mand. To avoid the problems which
would be caused if a second interrupt
occurred while the first was still being
dealt with, the interrupt facility is
automatically disabled after the in-
terrupt, and must be re-enabled, if
desired, by the programmer through
another IEN command.

To enable a better understanding of
the operation of the program to
measure reaction time, a flow chart is
shown in Fig. 1. Notice that the main

body of the program and the interrupt
service routine are two separate
programs, with no logical connection
(represented by a continuous line)
between them. The dotted line
represents the jump that occurs
between the two if and when an in-
terrupt occurs.

The flowchart is fairly self ex-
planatory. As the LEDs are required for
display purposes, their address must be
first set up in pointer register 1. The ad-
dress of the interrupt service routine is
also loaded into pointer register 3 at
this stage.

The variable TIME is used for coun-
ting the reaction time, and is set to zero
each time the program is run. A delay
of several seconds is then incorporated
into the program. After this time the
LEDs are set to display the binary word
"10101010". This particular number was

+ 5 V

10k

SA

MINISCAMP

PUSHBUTTON
(N/C)

GND

FIG. 2

chosen because it is dissimilar to any
other display produced by the
program. Thus, whatever the LED's
were displaying before this time, they
will change at this moment. This
provides a visual cue to the subject
whose reaction time is being deter-
mined. The moment he or she sees the
LEDs change, the pushbutton of Fig. 2
should be depressed, causing a high
logic level to appear at the sense A in-
put, and thus creating an interrupt.

However, immediately the LEDs
change the program starts to execute a

WAIT 10msec THEN
DECIMAL ADD 1

TO TIME

70 	ELECTRONICS Australia, May, 1978

*REACTION TIME
NOP
LDI 	0
XPAH 3
LDI 	X' 2F
XPAL
LDI 	0
XPAL 1
LDI 	8
XPRH 1
LDI 	0
ST 	TIME
LDI 	15
ST 	DELAY

DLP DLY 255
DLD DELAY
JNZ DLP
IEN
LDI 	X' AA
ST 	2(1)

TLOOP LDI 0
DLY 8
LD 	TIME
DA' 1
ST 	TIME
JNZ TLOOP,
LDI 	X'FF
ST 	2(1)

HALT JMP HALT
LD 	TIME
ST 	2(1)

HALTA JMP HALTA
DELAY . BYTE 0
TIME 	.BYTE 0

DISPLAY ADDRESS

;DELAY 4 SECS
;ENABLE INTERRUPT

;FLASH 10101010

;DELAY 10 MS

;REACTION TIME
j) 1 SEC
;STOP
;DISPLAY SUBROUTINE
;DISP REACT TIME
;STOP

END

0000
0001
0003
0004
0006
0007
0009
000A
000C
000D
000F
0011
(1013
0015
0017
0019
(1018
001C
001E
0020
0022
(1024
0026
0028
(102A
0020
002E
0030
0032
0034
0036
0038
0039
(103A

08
C400

C42F

C400
31
C408
35
C400
C829
C4OF
C824
8FFF
B820
9CFA
05
C4AA
C902
C400
8F08
C014
ECO1
C810
9CF4
C4FF
C902
90FE
C006
C902
90FE
00
00

The above procedure may seem
rather complicated, but is worth trying
to follow if you wish to make accurate
measurements of reaction time.

The final point of note about the
program is the method employed to
"stop" the program. Although the
SC/MP CPU does have a HALT instruc-
tion, it requires additional circuitry, ex-
ternal to the chip to implement it.
Otherwise it will be regarded as an
NOP instruction. The way I have
chosen to implement a pseudo HALT it
to simply put the machine into a tight
loop (HALT JMP HALT) wherein the
JMP instruction simply jumps back to
itself. For most purposes the machine
thus appears to be effectively halted.

After loading the program into your
computer, it may be run in the usual
way (i.e., CPU, RESET, RUN). The nor-
mally closed pushbutton (Fig. 2) should
then be pressed as soon as the LEDs
change. Your reaction time will then be
displayed on the LEDs. For example, if
the LEDs display 00101001 this would in-
dicate a reaction time of 0.29 seconds.
Note that the first four LEDs (from the
left) are a BCD representation of the
first number after the decimal point.
The rightmost four LEDs give the se-
cond decimal place. A healthy young
adult should have a consistent reaction
time with this apparatus of between
about 0.2 and 0.3 seconds. To run the
program again simply go through the
sequence HALT, RESET, and RUN. fry

Fig. 3: the reaction time program listing

loop that adds one to the variable TIME
for each 10 millisecond interval that
elapses until 'the interrupt actually oc-
curs. Upon receiving the interrupt, the
CPU jumps to the service routine
whereupon it then displays the current
value of TIME on the LEDs. Because
decimal addition was employed to in-
crement this variable, the readout on
the LEDs contains two BCD numbers.
These numbers represent the reaction
time in one-hundredths of a second.

One condition we have not yet dis-
cussed is what happens if the interrupt
does not occur. Well, as you may have
realised from the flowchart, each time
around the 10 ms counting loop there
is a test made to determine if TIME con-
tains a value indicating that more than
1000 ms (1 second) has elapsed. If it
does, the program is terminated and all
the LEDs are turned on to indicate this
condition. Those of you who find this
happening frequently when runnin
the program would be well advised to
have a physical checkup or drink less!

The actual program listing is given in
Fig. 3. I have incorporated a delay of
about four seconds between the time
of setting the RUN/HALT switch to
RUN and that when the LED's change.
This may be lengthened (by increasing
the number in address X'12) if you find
that you are able to anticipate this
change too readily. In fact, those with a
little ingenuity might like to incor-
porate the random number generator

for Mini Scamp.

routine of August 1977 at this point, to
provide a random starting delay of
between say 3 and 15 seconds.

The delay of 10 milliseconds is fairly
critical if you wish to achieve accurate
results with this program. Unfortunate-
ly, this value depends upon your exact
clock frequency, and this will in turn
depend on the exact value of the 470 pF
capacitor (or crystal) used in the SC/MP
clock circuit. Fortunately, even without
access to an accurate frequency meter,
it is possible to measure this frequency.
This can be done by running an earlier
program "Binary Count and Display",
and determining (using a watch) how
many seconds it takes to run right
through a complete cycle; that is, to
count from 0 through 255 and back to 0
again. The clock frequency (in
megahertz) of your computer is then
equal to 67.272 divided by this time.
More importantly, the time of one
microcycle (in microseconds) is equal
to the above time (in seconds) divided
by 33.636.

The number of microcycles required
(R) in the 10 ms delay instruction is now
given by 10,000/(microcycle time (us))
—72. As the actual delay in microcycles
is 13 + 2 x (accumulator) + 514 x
(displacement), the displacement (ad-
dress X'23 in the program) is given by D
= (R — 13)/514, forgetting the
remainder. The accumulator value (ad-
dress X'21) may be found by (R — 13 —
514 x D)/2.

ELECTRONICS Australia, May, 1978 	71

INTEGRATOR

INPUT 1
INPUT SELECTOR

AND SCALER
INPUT 20

FLAG 2

FLAG 0

SENSE A

COMPARATOR

ZERO
OFFSET

RESET
MINISCAMP

FLAG 1

- 2V

Using Mini Scamp
to find intermittents
Having built our Mini Scamp microcomputer and become familiar
with its operation, this contributor decided to use it to help find in-
termittent faults in electronic equipment. In this article he describes
the simple hardware interfacing used, and also gives the program
he developed.

by JOHN BARRY*

I have developed a simple way of us-
ing the Mini Scamp microcomputer to
help track down intermittent faults in
electronic circuits. Mini Scamp is used
to monitor the voltages at two points in
the circuit, and give an indication of
any change. It also records the values
before and after the change.

I initially developed this idea while
trying to repair an early model
Playmaster Twin 25 amplifier, which I
had built for a friend and which would
fail every few days at odd times. By
leaving the Mini Scamp unit connected
to two points in the amplifier overnight
I was able to trace the problem to one
of the driver transistors (BC639) which
was running fairly hot. I have subse-
quently used the unit to trace several
other intermittent faults (I work as an
Electronics Technician) and have found
it saves a lot of time as it can be left un-
attended until the fault shows up.

As you can see from the block
diagram, the external interfacing cir-
cuitry turns Mini Scamp into a simple
analog-to-digital converter system with
input multiplexing. The analog-to-
digital conversion is performed by
comparing the selected input voltage
with the output of an integrator fed
with a fixed input voltage, and initially
reset before conversion begins. While

the integrator output ramp is lower
than the unknown input, Mini Scamp is
used to develop a count. Then when
the ramp equals the input voltage, the
LM307 comparator signals this to Mini
Scamp by taking the SC/MP sense-A in-
put high. The count is then stopped,
with a value which is proportional to
the input voltage.

The count rate is selected so that a 2-
volt input range corresponds to 200
counts. However the input signal is
offset by +1 volt, so that signals of
either input polarity can be handled.
Thus counts from 0 to 100 correspond
to inputs from —1 to OV, while those
from 100 to 200 correspond to inputs
from 0 to +1V.

After a count is performed, 100
counts are subtracted from the result
and if the resultant number is positive
then this is taken to be a positive
voltage and this number is treated as
the reading (thus positive inputs result
in bit 8 being zero). If after subtracting
100 counts the result is negative (bit 8 is
1) then it is a negative result (in 2's com-
plement form). This result is converted
by subtracting 1 count and then com-
plementing the count giving a result
which corresponds to the displacement
below zero. The sign bit (bit 8) is set to
indicate a negative result.

The three flag outputs from the
SC/MP processor chip are used to zero
the integrator before a count and to
select the input to be read. I used reed
relays to perform this switching as they
were on hand, but it would possibly be
easier to use CMOS switches. Also the
number of input channels could be in-
creased by decoding the flag inputs,
but I found two inputs quite useful for
fault finding.

Ordinary variable resistors were used
to scale the inputs to suitable values
and these were calibrated using a mul-
timeter when the unit was set up. I used
+30 volt scales, as these are fairly com-
mon maximum values with solid-state
equipment.

When the program is run the unit
reads channel 1 and displays it on the .
LEDs and then halts. If this result is un-
suitable the reset button allows a repeat
reading. If the reading is suitable the
deposit button is pressed and the unit
repeats the process with channel 2;
These two readings are stored for later
comparison in the stack.

When the deposit button is pressed
after the channel 2 reading the unit
then reads both channels again and
"exclusive ORs" the results with the
original readings.

I discarded the three least significant
digits (bits) from these results, to allow
slight variations due to supply voltage
changes etc. The amount of variation
detected may be altered by varying the
bits discarded.

If the readings are the same, the
process is repeated continously. When
a variation is detected, the program
stops and the deposit light comes on as
an indicator. The readings may then be
examined by directly examining the

*82 Liverpool Street, Liverpool NSW.

Shown above is the block diagram of the author's intermit-
tent detection system using Mini Scamp. At right are the
control relay driver cricuits.

74 	ELECTRONICS Australia, June, 1978

I

SET FLAGS
TO ENABLE
CHANNEL 1

YES

NO
SUBTRACT 1 AND

COMPLEMENT
, (GIVES COUNT

BELOW ZERO)
RETURN

POSITIVE RESULT

TAKE A READING
SUBROUTINE

SET FLAGS
TO ENABLE
CHANNEL 2

ENABLE
INTEGRATOR

(FLAG 0)

START START

SET POINTERS
P1 =
P2 = 00F0
P3 = 0080

P1 = INPUT/OUTPUT POINTER
P2 = STACK POINTER
P3 = SUBROUTINE POINTER

RESET COUNT
RESET•

INTEGRATOR
(FLAG 0)

SET FLAGS
TO ENABLE
CHANNEL 1

TAKE A READING
SUBROUTINE

DELAY
TAKE A READING

SUBROUTINE

STORE IN
STACK +1

STORE IN
STACK +2

NO

I DISPLAY READING
 ON LEDS

STOP
WAIT FOR DEPOSIT

SET FLAGS
TO ENABLE
CHANNEL 2

SUBTRACT 100
COUNTS

(TO RESTORE
TO ZERO)

TAKE A READING
SUBROUTINE

STORE IN
STACK +4

0000 08 	NOP
0001 C4 08 	LDI
0003 35 	XPAH P1
0004 E4 00 	LDI
0006 31 	XPAL P1
0007 C4 00 	LDI
0009 36 	XPAH P2
000A C4 FO 	LDI
000C 32 	XPAL P2
000D C4 00 	LDI
000F 37 	XPAH P3
0010 C4 60 	LDI
0012 33 	XPAL P3
0013 06 	CSA
0014 D4 FD 	ANI
0016 DC 04 	ORI
0018 07 	CAS
0019 3F 	XPPC P3
001A CA 01 	ST P2+1
001C C9 02 	ST P1+2
001E C1 01 	LD P1+1
0020 06 	CSA
0021 D4 FB 	ANI
0023 DC 02 	ORI
0025 07 	CAS
0026 C4 80 	LDI
0028 33 r 	XPAL P3
0029 3F 	XPPC P3
002A CA 03 	ST P2+3
002C C9 02 	ST P1+2
002E C1 01 	LD P1+1
0030 06 	$1 CSA
0031 D4 FD 	ANI
0033 DC 04 	ORI
0035 07 	CAS
0036 C4 BO 	LDI
0038 33 	XPAL P3
0039 3F 	XPPC P3
003A CA 02 	ST P2+2
003C 06 	CSA
003D D4 FB 	ANI
003F DC 02 	ORI
0041 07 	CAS
0042 C4 BO 	LDI
0044 33 	XPAL P3
0045 3F 	XPPC P3
0046 CA 04 	ST P2+4
0048 C2 02 	LD P2+2
004A E2 01 	XOR 02+1
004C D4 F8 	ANI
004E 9C 08 	JNZ
0050 C2 04 	LD P2+4
0052 E2 03 	XOR P2+3

0054 D4 F8 	ANI
0056 98 D8 	JZ
0058 C1 01 $4 LD P1+1

(SUBROUTINE TO TAME A READING)

0080 08 	NOP
0081 C4 00 	LDI
0083 CA _00 	ST P2
0085 06 	CSA
0086 D4 FE 	ANI
0088 07 	CAS
0089 8F FF 	DLY
0088 06 	CSA
00BC DC 01 	ORI
008E 07 	CAS
008F C4 OC $1 LDI
00C1 8F 00 	DLY
00C3 06 	CSA
00C4 D4 10 	ANI
0006 9C 04 	JNZ
0008 AA 00 	ILD P2
COCA 90 F3 	JMP
00CC 06 	$2 CSA
OOCD DC 80 	ORI
00CF 07 	CAS
DODO C2 00 	LD P2
00D2 FC 64 	CAI
00D4 CA 00 	ST P2
00D6 D4 80 	ANI
00D8 9C 03 	JNZ
OODA C2 00 	LD P2
OODC 3F 	XPPC P3
OODD C2 00 $3 LD P2
OODF F4 FF 	ADD
00E1 CA 00 	ST P2
00E3 06 	CSA
00E4 D4 7F 	ANI
00E6 07 	CAS
00E7 C4 00 	LDI
00E9 FA 00 	CAD
00E8 DC 80 	OR
COED 3F 	XPPC P3

The flow charts for the author's program are shown
at upper left, with the "take a reading" subroutine
shown separated from the rest of the program for
clarity. The full listing is shown above, with the sub-
routine again separated for clarity.

YES

STOP 	I
(DEPOSIT LIGHT)/

)

contents of the appropriate memory
locations:
00F1 for the initial channel 1 reading
00F2 for the final channel 1 reading
00F3 for the initial channel 2 reading
00F4 for the final channel 2 reading

The output readings are of course in
binary and must be converted to
decimal and suitably scaled. I am at pre-
sent working on a decimal readout us-
ing seven segment displays as I have
also found the unit can be used simply
as a digital voltmeter by inserting a loop
in the program after the initial reading.

The interfacing circuitry was bull on
a piece of Vero-board and plugs itIto
the back of the Mini Scamp via a 25 way
cannon connector. A —5 volt rail was
obtained from the —12V available in
Mini Scamp using a LM320T fixed
regulator.

Editor's Note: It may be desirable to
add a bell, buzzer or other audible
alarm to Mini Scamp for this applica-
tion, so that it can attract one's atten-
tion more effectively. This could be
done via a relay and driver connected
to the collector of the DRQ control
transistor. 	 ept

SET SIGN BIT
(NEGATIVE

RESULT)

The circuit for the simple analog-to-digital converter system added to Mini Scamp,
and controlled by it via the relays R11, 2 and 3.

ELECTRONICS Australia, June, 1978 	75

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	mini_scamp_finds_intermittants_ea_78_06.pdf
	Page 1
	Page 2

